use of org.orekit.frames.Transform in project Orekit by CS-SI.
the class AngularRaDecMeasurementCreator method handleStep.
public void handleStep(final SpacecraftState currentState, final boolean isLast) throws OrekitException {
for (final GroundStation station : context.stations) {
final AbsoluteDate date = currentState.getDate();
final Frame inertial = currentState.getFrame();
final Vector3D position = currentState.getPVCoordinates().getPosition();
if (station.getBaseFrame().getElevation(position, inertial, date) > FastMath.toRadians(30.0)) {
final UnivariateSolver solver = new BracketingNthOrderBrentSolver(1.0e-12, 5);
final double downLinkDelay = solver.solve(1000, new UnivariateFunction() {
public double value(final double x) throws OrekitExceptionWrapper {
try {
final Transform t = station.getOffsetToInertial(inertial, date.shiftedBy(x));
final double d = Vector3D.distance(position, t.transformPosition(Vector3D.ZERO));
return d - x * Constants.SPEED_OF_LIGHT;
} catch (OrekitException oe) {
throw new OrekitExceptionWrapper(oe);
}
}
}, -1.0, 1.0);
// Satellite position at signal departure
final Vector3D satelliteAtDeparture = currentState.shiftedBy(-downLinkDelay).getPVCoordinates().getPosition();
// Initialize measurement
final double[] angular = new double[2];
final double[] sigma = { 1.0, 1.0 };
final double[] baseweight = { 10.0, 10.0 };
// Inertial frame used
final Frame inertialFrame = context.initialOrbit.getFrame();
// Station position at signal arrival
// Set the reference date of offset drivers arbitrarily to avoid exception
station.getPrimeMeridianOffsetDriver().setReferenceDate(date);
station.getPolarOffsetXDriver().setReferenceDate(date);
station.getPolarOffsetYDriver().setReferenceDate(date);
final Transform offsetToInertialArrival = station.getOffsetToInertial(inertialFrame, date);
final Vector3D stationPArrival = offsetToInertialArrival.transformVector(Vector3D.ZERO);
// Vector station position at signal arrival - satellite at signal departure
// In inertial reference frame
final Vector3D staSat = satelliteAtDeparture.subtract(stationPArrival);
// Compute measurement
// Right ascension
final double baseRightAscension = staSat.getAlpha();
angular[0] = MathUtils.normalizeAngle(baseRightAscension, 0.0);
// Declination
angular[1] = staSat.getDelta();
addMeasurement(new AngularRaDec(station, inertialFrame, date, angular, sigma, baseweight));
}
}
}
use of org.orekit.frames.Transform in project Orekit by CS-SI.
the class DragForceTest method accelerationDerivatives.
@Override
protected FieldVector3D<DerivativeStructure> accelerationDerivatives(final ForceModel forceModel, final AbsoluteDate date, final Frame frame, final FieldVector3D<DerivativeStructure> position, final FieldVector3D<DerivativeStructure> velocity, final FieldRotation<DerivativeStructure> rotation, final DerivativeStructure mass) throws OrekitException {
try {
java.lang.reflect.Field atmosphereField = DragForce.class.getDeclaredField("atmosphere");
atmosphereField.setAccessible(true);
Atmosphere atmosphere = (Atmosphere) atmosphereField.get(forceModel);
java.lang.reflect.Field spacecraftField = DragForce.class.getDeclaredField("spacecraft");
spacecraftField.setAccessible(true);
DragSensitive spacecraft = (DragSensitive) spacecraftField.get(forceModel);
// retrieve derivation properties
final DSFactory factory = mass.getFactory();
// get atmosphere properties in atmosphere own frame
final Frame atmFrame = atmosphere.getFrame();
final Transform toBody = frame.getTransformTo(atmFrame, date);
final FieldVector3D<DerivativeStructure> posBodyDS = toBody.transformPosition(position);
final Vector3D posBody = posBodyDS.toVector3D();
final Vector3D vAtmBody = atmosphere.getVelocity(date, posBody, atmFrame);
// to the Atmosphere interface
if (factory.getCompiler().getOrder() > 1) {
throw new OrekitException(OrekitMessages.OUT_OF_RANGE_DERIVATION_ORDER, factory.getCompiler().getOrder());
}
final double delta = 1.0;
final double x = posBody.getX();
final double y = posBody.getY();
final double z = posBody.getZ();
final double rho0 = atmosphere.getDensity(date, posBody, atmFrame);
final double dRhodX = (atmosphere.getDensity(date, new Vector3D(x + delta, y, z), atmFrame) - rho0) / delta;
final double dRhodY = (atmosphere.getDensity(date, new Vector3D(x, y + delta, z), atmFrame) - rho0) / delta;
final double dRhodZ = (atmosphere.getDensity(date, new Vector3D(x, y, z + delta), atmFrame) - rho0) / delta;
final double[] dXdQ = posBodyDS.getX().getAllDerivatives();
final double[] dYdQ = posBodyDS.getY().getAllDerivatives();
final double[] dZdQ = posBodyDS.getZ().getAllDerivatives();
final double[] rhoAll = new double[dXdQ.length];
rhoAll[0] = rho0;
for (int i = 1; i < rhoAll.length; ++i) {
rhoAll[i] = dRhodX * dXdQ[i] + dRhodY * dYdQ[i] + dRhodZ * dZdQ[i];
}
final DerivativeStructure rho = factory.build(rhoAll);
// we consider that at first order the atmosphere velocity in atmosphere frame
// does not depend on local position; however atmosphere velocity in inertial
// frame DOES depend on position since the transform between the frames depends
// on it, due to central body rotation rate and velocity composition.
// So we use the transform to get the correct partial derivatives on vAtm
final FieldVector3D<DerivativeStructure> vAtmBodyDS = new FieldVector3D<>(factory.constant(vAtmBody.getX()), factory.constant(vAtmBody.getY()), factory.constant(vAtmBody.getZ()));
final FieldPVCoordinates<DerivativeStructure> pvAtmBody = new FieldPVCoordinates<>(posBodyDS, vAtmBodyDS);
final FieldPVCoordinates<DerivativeStructure> pvAtm = toBody.getInverse().transformPVCoordinates(pvAtmBody);
// now we can compute relative velocity, it takes into account partial derivatives with respect to position
final FieldVector3D<DerivativeStructure> relativeVelocity = pvAtm.getVelocity().subtract(velocity);
// compute acceleration with all its partial derivatives
return spacecraft.dragAcceleration(new FieldAbsoluteDate<>(factory.getDerivativeField(), date), frame, position, rotation, mass, rho, relativeVelocity, forceModel.getParameters(factory.getDerivativeField()));
} catch (IllegalArgumentException | IllegalAccessException | NoSuchFieldException | SecurityException e) {
return null;
}
}
use of org.orekit.frames.Transform in project Orekit by CS-SI.
the class SimpleExponentialAtmosphereTest method testExpAtmosphere.
@Test
public void testExpAtmosphere() throws OrekitException {
Vector3D posInEME2000 = new Vector3D(10000, Vector3D.PLUS_I);
AbsoluteDate date = AbsoluteDate.J2000_EPOCH;
Frame itrf = FramesFactory.getITRF(IERSConventions.IERS_2010, true);
SimpleExponentialAtmosphere atm = new SimpleExponentialAtmosphere(new OneAxisEllipsoid(Utils.ae, 1.0 / 298.257222101, itrf), 0.0004, 42000.0, 7500.0);
Vector3D vel = atm.getVelocity(date, posInEME2000, FramesFactory.getEME2000());
Transform toBody = FramesFactory.getEME2000().getTransformTo(itrf, date);
Vector3D test = Vector3D.crossProduct(toBody.getRotationRate(), posInEME2000);
test = test.subtract(vel);
Assert.assertEquals(0, test.getNorm(), 2.9e-5);
}
use of org.orekit.frames.Transform in project Orekit by CS-SI.
the class HolmesFeatherstoneAttractionModelTest method accelerationDerivatives.
@Override
protected FieldVector3D<DerivativeStructure> accelerationDerivatives(final ForceModel forceModel, final AbsoluteDate date, final Frame frame, final FieldVector3D<DerivativeStructure> position, final FieldVector3D<DerivativeStructure> velocity, final FieldRotation<DerivativeStructure> rotation, final DerivativeStructure mass) throws OrekitException {
try {
java.lang.reflect.Field bodyFrameField = HolmesFeatherstoneAttractionModel.class.getDeclaredField("bodyFrame");
bodyFrameField.setAccessible(true);
Frame bodyFrame = (Frame) bodyFrameField.get(forceModel);
// get the position in body frame
final Transform fromBodyFrame = bodyFrame.getTransformTo(frame, date);
final Transform toBodyFrame = fromBodyFrame.getInverse();
final Vector3D positionBody = toBodyFrame.transformPosition(position.toVector3D());
// compute gradient and Hessian
final GradientHessian gh = gradientHessian((HolmesFeatherstoneAttractionModel) forceModel, date, positionBody);
// gradient of the non-central part of the gravity field
final double[] gInertial = fromBodyFrame.transformVector(new Vector3D(gh.getGradient())).toArray();
// Hessian of the non-central part of the gravity field
final RealMatrix hBody = new Array2DRowRealMatrix(gh.getHessian(), false);
final RealMatrix rot = new Array2DRowRealMatrix(toBodyFrame.getRotation().getMatrix());
final RealMatrix hInertial = rot.transpose().multiply(hBody).multiply(rot);
// distribute all partial derivatives in a compact acceleration vector
final double[] derivatives = new double[1 + mass.getFreeParameters()];
final DerivativeStructure[] accDer = new DerivativeStructure[3];
for (int i = 0; i < 3; ++i) {
// first element is value of acceleration (i.e. gradient of field)
derivatives[0] = gInertial[i];
// next three elements are one row of the Jacobian of acceleration (i.e. Hessian of field)
derivatives[1] = hInertial.getEntry(i, 0);
derivatives[2] = hInertial.getEntry(i, 1);
derivatives[3] = hInertial.getEntry(i, 2);
// next elements (three or four depending on mass being used or not) are left as 0
accDer[i] = mass.getFactory().build(derivatives);
}
return new FieldVector3D<>(accDer);
} catch (IllegalArgumentException | IllegalAccessException | NoSuchFieldException | SecurityException e) {
return null;
}
}
use of org.orekit.frames.Transform in project Orekit by CS-SI.
the class RangeAnalytic method theoreticalEvaluationValidation.
/**
* Added for validation
* Compares directly numeric and analytic computations
* @param iteration
* @param evaluation
* @param state
* @return
* @throws OrekitException
*/
protected EstimatedMeasurement<Range> theoreticalEvaluationValidation(final int iteration, final int evaluation, final SpacecraftState state) throws OrekitException {
// Station & DSFactory attributes from parent Range class
final GroundStation groundStation = getStation();
// get the number of parameters used for derivation
int nbParams = 6;
final Map<String, Integer> indices = new HashMap<>();
for (ParameterDriver driver : getParametersDrivers()) {
if (driver.isSelected()) {
indices.put(driver.getName(), nbParams++);
}
}
final DSFactory dsFactory = new DSFactory(nbParams, 1);
final Field<DerivativeStructure> field = dsFactory.getDerivativeField();
final FieldVector3D<DerivativeStructure> zero = FieldVector3D.getZero(field);
// Range derivatives are computed with respect to spacecraft state in inertial frame
// and station position in station's offset frame
// -------
//
// Parameters:
// - 0..2 - Px, Py, Pz : Position of the spacecraft in inertial frame
// - 3..5 - Vx, Vy, Vz : Velocity of the spacecraft in inertial frame
// - 6..8 - QTx, QTy, QTz: Position of the station in station's offset frame
// Coordinates of the spacecraft expressed as a derivative structure
final TimeStampedFieldPVCoordinates<DerivativeStructure> pvaDS = getCoordinates(state, 0, dsFactory);
// transform between station and inertial frame, expressed as a derivative structure
// The components of station's position in offset frame are the 3 last derivative parameters
final AbsoluteDate downlinkDate = getDate();
final FieldAbsoluteDate<DerivativeStructure> downlinkDateDS = new FieldAbsoluteDate<>(field, downlinkDate);
final FieldTransform<DerivativeStructure> offsetToInertialDownlink = groundStation.getOffsetToInertial(state.getFrame(), downlinkDateDS, dsFactory, indices);
// Station position in inertial frame at end of the downlink leg
final TimeStampedFieldPVCoordinates<DerivativeStructure> stationDownlink = offsetToInertialDownlink.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(downlinkDateDS, zero, zero, zero));
// Compute propagation times
// (if state has already been set up to pre-compensate propagation delay,
// we will have offset == downlinkDelay and transitState will be
// the same as state)
// Downlink delay
final DerivativeStructure tauD = signalTimeOfFlight(pvaDS, stationDownlink.getPosition(), downlinkDateDS);
// Transit state
final double delta = downlinkDate.durationFrom(state.getDate());
final DerivativeStructure tauDMDelta = tauD.negate().add(delta);
final SpacecraftState transitState = state.shiftedBy(tauDMDelta.getValue());
// Transit state position (re)computed with derivative structures
final TimeStampedFieldPVCoordinates<DerivativeStructure> transitStateDS = pvaDS.shiftedBy(tauDMDelta);
// Station at transit state date (derivatives of tauD taken into account)
final TimeStampedFieldPVCoordinates<DerivativeStructure> stationAtTransitDate = stationDownlink.shiftedBy(tauD.negate());
// Uplink delay
final DerivativeStructure tauU = signalTimeOfFlight(stationAtTransitDate, transitStateDS.getPosition(), transitStateDS.getDate());
// Prepare the evaluation
final EstimatedMeasurement<Range> estimated = new EstimatedMeasurement<Range>(this, iteration, evaluation, new SpacecraftState[] { transitState }, null);
// Range value
final DerivativeStructure tau = tauD.add(tauU);
final double cOver2 = 0.5 * Constants.SPEED_OF_LIGHT;
final DerivativeStructure range = tau.multiply(cOver2);
estimated.setEstimatedValue(range.getValue());
// Range partial derivatives with respect to state
final double[] derivatives = range.getAllDerivatives();
estimated.setStateDerivatives(0, Arrays.copyOfRange(derivatives, 1, 7));
// (beware element at index 0 is the value, not a derivative)
for (final ParameterDriver driver : getParametersDrivers()) {
final Integer index = indices.get(driver.getName());
if (index != null) {
estimated.setParameterDerivatives(driver, derivatives[index + 1]);
}
}
// ----------
// VALIDATION
// -----------
// Computation of the value without DS
// ----------------------------------
// Time difference between t (date of the measurement) and t' (date tagged in spacecraft state)
// Station position at signal arrival
final Transform topoToInertDownlink = groundStation.getOffsetToInertial(state.getFrame(), downlinkDate);
final PVCoordinates QDownlink = topoToInertDownlink.transformPVCoordinates(PVCoordinates.ZERO);
// Downlink time of flight from spacecraft to station
final double td = signalTimeOfFlight(state.getPVCoordinates(), QDownlink.getPosition(), downlinkDate);
final double dt = delta - td;
// Transit state position
final AbsoluteDate transitT = state.getDate().shiftedBy(dt);
final SpacecraftState transit = state.shiftedBy(dt);
final Vector3D transitP = transitState.getPVCoordinates().getPosition();
// Station position at signal departure
// First guess
// AbsoluteDate uplinkDate = downlinkDate.shiftedBy(-getObservedValue()[0] / cOver2);
// final Transform topoToInertUplink =
// station.getOffsetFrame().getTransformTo(state.getFrame(), uplinkDate);
// TimeStampedPVCoordinates QUplink = topoToInertUplink.
// transformPVCoordinates(new TimeStampedPVCoordinates(uplinkDate, PVCoordinates.ZERO));
// Station position at transit state date
final Transform topoToInertAtTransitDate = groundStation.getOffsetToInertial(state.getFrame(), transitT);
TimeStampedPVCoordinates QAtTransitDate = topoToInertAtTransitDate.transformPVCoordinates(new TimeStampedPVCoordinates(transitT, PVCoordinates.ZERO));
// Uplink time of flight
final double tu = signalTimeOfFlight(QAtTransitDate, transitP, transitT);
// Total time of flight
final double t = td + tu;
// Real date and position of station at signal departure
AbsoluteDate uplinkDate = downlinkDate.shiftedBy(-t);
TimeStampedPVCoordinates QUplink = topoToInertDownlink.shiftedBy(-t).transformPVCoordinates(new TimeStampedPVCoordinates(uplinkDate, PVCoordinates.ZERO));
// Range value
double r = t * cOver2;
double dR = r - range.getValue();
// td derivatives / state
// -----------------------
// Qt = Master station position at tmeas = t = signal arrival at master station
final Vector3D vel = state.getPVCoordinates().getVelocity();
final Vector3D Qt_V = QDownlink.getVelocity();
final Vector3D Ptr = transit.getPVCoordinates().getPosition();
final Vector3D Ptr_Qt = QDownlink.getPosition().subtract(Ptr);
final double dDown = Constants.SPEED_OF_LIGHT * Constants.SPEED_OF_LIGHT * td - Vector3D.dotProduct(Ptr_Qt, vel);
// Derivatives of the downlink time of flight
final double dtddPx = -Ptr_Qt.getX() / dDown;
final double dtddPy = -Ptr_Qt.getY() / dDown;
final double dtddPz = -Ptr_Qt.getZ() / dDown;
final double dtddVx = dtddPx * dt;
final double dtddVy = dtddPy * dt;
final double dtddVz = dtddPz * dt;
// From the DS
final double dtddPxDS = tauD.getPartialDerivative(1, 0, 0, 0, 0, 0, 0, 0, 0);
final double dtddPyDS = tauD.getPartialDerivative(0, 1, 0, 0, 0, 0, 0, 0, 0);
final double dtddPzDS = tauD.getPartialDerivative(0, 0, 1, 0, 0, 0, 0, 0, 0);
final double dtddVxDS = tauD.getPartialDerivative(0, 0, 0, 1, 0, 0, 0, 0, 0);
final double dtddVyDS = tauD.getPartialDerivative(0, 0, 0, 0, 1, 0, 0, 0, 0);
final double dtddVzDS = tauD.getPartialDerivative(0, 0, 0, 0, 0, 1, 0, 0, 0);
// Difference
final double d_dtddPx = dtddPxDS - dtddPx;
final double d_dtddPy = dtddPyDS - dtddPy;
final double d_dtddPz = dtddPzDS - dtddPz;
final double d_dtddVx = dtddVxDS - dtddVx;
final double d_dtddVy = dtddVyDS - dtddVy;
final double d_dtddVz = dtddVzDS - dtddVz;
// tu derivatives / state
// -----------------------
final Vector3D Qt2_Ptr = Ptr.subtract(QUplink.getPosition());
final double dUp = Constants.SPEED_OF_LIGHT * Constants.SPEED_OF_LIGHT * tu - Vector3D.dotProduct(Qt2_Ptr, Qt_V);
// test
// // Speed of the station at tmeas-t
// // Note: Which one to use in the calculation of dUp ???
// final Vector3D Qt2_V = QUplink.getVelocity();
// final double dUp = Constants.SPEED_OF_LIGHT * Constants.SPEED_OF_LIGHT * tu -
// Vector3D.dotProduct(Qt2_Ptr, Qt2_V);
// test
// tu derivatives
final double dtudPx = 1. / dUp * Qt2_Ptr.dotProduct(Vector3D.PLUS_I.add((Qt_V.subtract(vel)).scalarMultiply(dtddPx)));
final double dtudPy = 1. / dUp * Qt2_Ptr.dotProduct(Vector3D.PLUS_J.add((Qt_V.subtract(vel)).scalarMultiply(dtddPy)));
final double dtudPz = 1. / dUp * Qt2_Ptr.dotProduct(Vector3D.PLUS_K.add((Qt_V.subtract(vel)).scalarMultiply(dtddPz)));
final double dtudVx = dtudPx * dt;
final double dtudVy = dtudPy * dt;
final double dtudVz = dtudPz * dt;
// From the DS
final double dtudPxDS = tauU.getPartialDerivative(1, 0, 0, 0, 0, 0, 0, 0, 0);
final double dtudPyDS = tauU.getPartialDerivative(0, 1, 0, 0, 0, 0, 0, 0, 0);
final double dtudPzDS = tauU.getPartialDerivative(0, 0, 1, 0, 0, 0, 0, 0, 0);
final double dtudVxDS = tauU.getPartialDerivative(0, 0, 0, 1, 0, 0, 0, 0, 0);
final double dtudVyDS = tauU.getPartialDerivative(0, 0, 0, 0, 1, 0, 0, 0, 0);
final double dtudVzDS = tauU.getPartialDerivative(0, 0, 0, 0, 0, 1, 0, 0, 0);
// Difference
final double d_dtudPx = dtudPxDS - dtudPx;
final double d_dtudPy = dtudPyDS - dtudPy;
final double d_dtudPz = dtudPzDS - dtudPz;
final double d_dtudVx = dtudVxDS - dtudVx;
final double d_dtudVy = dtudVyDS - dtudVy;
final double d_dtudVz = dtudVzDS - dtudVz;
// Range derivatives / state
// -----------------------
// R = Range
double dRdPx = (dtddPx + dtudPx) * cOver2;
double dRdPy = (dtddPy + dtudPy) * cOver2;
double dRdPz = (dtddPz + dtudPz) * cOver2;
double dRdVx = (dtddVx + dtudVx) * cOver2;
double dRdVy = (dtddVy + dtudVy) * cOver2;
double dRdVz = (dtddVz + dtudVz) * cOver2;
// With DS
double dRdPxDS = range.getPartialDerivative(1, 0, 0, 0, 0, 0, 0, 0, 0);
double dRdPyDS = range.getPartialDerivative(0, 1, 0, 0, 0, 0, 0, 0, 0);
double dRdPzDS = range.getPartialDerivative(0, 0, 1, 0, 0, 0, 0, 0, 0);
double dRdVxDS = range.getPartialDerivative(0, 0, 0, 1, 0, 0, 0, 0, 0);
double dRdVyDS = range.getPartialDerivative(0, 0, 0, 0, 1, 0, 0, 0, 0);
double dRdVzDS = range.getPartialDerivative(0, 0, 0, 0, 0, 1, 0, 0, 0);
// Diff
final double d_dRdPx = dRdPxDS - dRdPx;
final double d_dRdPy = dRdPyDS - dRdPy;
final double d_dRdPz = dRdPzDS - dRdPz;
final double d_dRdVx = dRdVxDS - dRdVx;
final double d_dRdVy = dRdVyDS - dRdVy;
final double d_dRdVz = dRdVzDS - dRdVz;
// td derivatives / station
// -----------------------
final AngularCoordinates ac = topoToInertDownlink.getAngular().revert();
final Rotation rotTopoToInert = ac.getRotation();
final Vector3D omega = ac.getRotationRate();
final Vector3D dtddQI = Ptr_Qt.scalarMultiply(1. / dDown);
final double dtddQIx = dtddQI.getX();
final double dtddQIy = dtddQI.getY();
final double dtddQIz = dtddQI.getZ();
final Vector3D dtddQ = rotTopoToInert.applyTo(dtddQI);
// With DS
double dtddQxDS = tauD.getPartialDerivative(0, 0, 0, 0, 0, 0, 1, 0, 0);
double dtddQyDS = tauD.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 1, 0);
double dtddQzDS = tauD.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 0, 1);
// Diff
final double d_dtddQx = dtddQxDS - dtddQ.getX();
final double d_dtddQy = dtddQyDS - dtddQ.getY();
final double d_dtddQz = dtddQzDS - dtddQ.getZ();
// tu derivatives / station
// -----------------------
// Inertial frame
final double dtudQIx = 1 / dUp * Qt2_Ptr.dotProduct(Vector3D.MINUS_I.add((Qt_V.subtract(vel)).scalarMultiply(dtddQIx)).subtract(Vector3D.PLUS_I.crossProduct(omega).scalarMultiply(t)));
final double dtudQIy = 1 / dUp * Qt2_Ptr.dotProduct(Vector3D.MINUS_J.add((Qt_V.subtract(vel)).scalarMultiply(dtddQIy)).subtract(Vector3D.PLUS_J.crossProduct(omega).scalarMultiply(t)));
final double dtudQIz = 1 / dUp * Qt2_Ptr.dotProduct(Vector3D.MINUS_K.add((Qt_V.subtract(vel)).scalarMultiply(dtddQIz)).subtract(Vector3D.PLUS_K.crossProduct(omega).scalarMultiply(t)));
// // test
// final double dtudQIx = 1/dUp*Qt2_Ptr
// // .dotProduct(Vector3D.MINUS_I);
// // .dotProduct((Qt_V.subtract(vel)).scalarMultiply(dtddQIx));
// .dotProduct(Vector3D.MINUS_I.crossProduct(omega).scalarMultiply(t));
// final double dtudQIy = 1/dUp*Qt2_Ptr
// // .dotProduct(Vector3D.MINUS_J);
// // .dotProduct((Qt_V.subtract(vel)).scalarMultiply(dtddQIy));
// .dotProduct(Vector3D.MINUS_J.crossProduct(omega).scalarMultiply(t));
// final double dtudQIz = 1/dUp*Qt2_Ptr
// // .dotProduct(Vector3D.MINUS_K);
// // .dotProduct((Qt_V.subtract(vel)).scalarMultiply(dtddQIz));
// .dotProduct(Vector3D.MINUS_K.crossProduct(omega).scalarMultiply(t));
//
// double dtu_dQxDS = tauU.getPartialDerivative(0, 0, 0, 0, 0, 0, 1, 0, 0);
// double dtu_dQyDS = tauU.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 1, 0);
// double dtu_dQzDS = tauU.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 0, 1);
// final Vector3D dtudQDS = new Vector3D(dtu_dQxDS, dtu_dQyDS, dtu_dQzDS);
// final Vector3D dtudQIDS = rotTopoToInert.applyInverseTo(dtudQDS);
// double dtudQIxDS = dtudQIDS.getX();
// double dtudQIyDS = dtudQIDS.getY();
// double dtudQIxzS = dtudQIDS.getZ();
// // test
// Topocentric frame
final Vector3D dtudQI = new Vector3D(dtudQIx, dtudQIy, dtudQIz);
final Vector3D dtudQ = rotTopoToInert.applyTo(dtudQI);
// With DS
double dtudQxDS = tauU.getPartialDerivative(0, 0, 0, 0, 0, 0, 1, 0, 0);
double dtudQyDS = tauU.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 1, 0);
double dtudQzDS = tauU.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 0, 1);
// Diff
final double d_dtudQx = dtudQxDS - dtudQ.getX();
final double d_dtudQy = dtudQyDS - dtudQ.getY();
final double d_dtudQz = dtudQzDS - dtudQ.getZ();
// Range derivatives / station
// -----------------------
double dRdQx = (dtddQ.getX() + dtudQ.getX()) * cOver2;
double dRdQy = (dtddQ.getY() + dtudQ.getY()) * cOver2;
double dRdQz = (dtddQ.getZ() + dtudQ.getZ()) * cOver2;
// With DS
double dRdQxDS = range.getPartialDerivative(0, 0, 0, 0, 0, 0, 1, 0, 0);
double dRdQyDS = range.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 1, 0);
double dRdQzDS = range.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 0, 1);
// Diff
final double d_dRdQx = dRdQxDS - dRdQx;
final double d_dRdQy = dRdQyDS - dRdQy;
final double d_dRdQz = dRdQzDS - dRdQz;
// Print results to avoid warning
final boolean printResults = false;
if (printResults) {
System.out.println("dR = " + dR);
System.out.println("d_dtddPx = " + d_dtddPx);
System.out.println("d_dtddPy = " + d_dtddPy);
System.out.println("d_dtddPz = " + d_dtddPz);
System.out.println("d_dtddVx = " + d_dtddVx);
System.out.println("d_dtddVy = " + d_dtddVy);
System.out.println("d_dtddVz = " + d_dtddVz);
System.out.println("d_dtudPx = " + d_dtudPx);
System.out.println("d_dtudPy = " + d_dtudPy);
System.out.println("d_dtudPz = " + d_dtudPz);
System.out.println("d_dtudVx = " + d_dtudVx);
System.out.println("d_dtudVy = " + d_dtudVy);
System.out.println("d_dtudVz = " + d_dtudVz);
System.out.println("d_dRdPx = " + d_dRdPx);
System.out.println("d_dRdPy = " + d_dRdPy);
System.out.println("d_dRdPz = " + d_dRdPz);
System.out.println("d_dRdVx = " + d_dRdVx);
System.out.println("d_dRdVy = " + d_dRdVy);
System.out.println("d_dRdVz = " + d_dRdVz);
System.out.println("d_dtddQx = " + d_dtddQx);
System.out.println("d_dtddQy = " + d_dtddQy);
System.out.println("d_dtddQz = " + d_dtddQz);
System.out.println("d_dtudQx = " + d_dtudQx);
System.out.println("d_dtudQy = " + d_dtudQy);
System.out.println("d_dtudQz = " + d_dtudQz);
System.out.println("d_dRdQx = " + d_dRdQx);
System.out.println("d_dRdQy = " + d_dRdQy);
System.out.println("d_dRdQz = " + d_dRdQz);
}
// Dummy return
return estimated;
}
Aggregations