Search in sources :

Example 1 with FastCorrelator

use of uk.ac.sussex.gdsc.core.utils.FastCorrelator in project GDSC-SMLM by aherbert.

the class BenchmarkSpotFilter method summariseResults.

private BenchmarkSpotFilterResult summariseResults(TIntObjectHashMap<FilterResult> filterResults, FitEngineConfiguration config, MaximaSpotFilter spotFilter, boolean batchSummary) {
    final BenchmarkSpotFilterResult filterResult = new BenchmarkSpotFilterResult(simulationParameters.id, filterResults, config, spotFilter);
    // Note:
    // Although we can compute the TP/FP score as each additional spot is added
    // using the RankedScoreCalculator this is not applicable to the PeakFit method.
    // The method relies on all spot candidates being present in order to make a
    // decision to fit the candidate as a multiple. So scoring the filter candidates using
    // for example the top 10 may get a better score than if all candidates were scored
    // and the scores accumulated for the top 10, it is not how the algorithm will use the
    // candidate set. I.e. It does not use the top 10, then top 20 to refine the fit, etc.
    // (the method is not iterative) .
    // We require an assessment of how a subset of the scored candidates
    // in ranked order contributes to the overall score, i.e. are the candidates ranked
    // in the correct order, those most contributing to the match to the underlying data
    // should be higher up and those least contributing will be at the end.
    // TODO We could add some smart filtering of candidates before ranking. This would
    // allow assessment of the candidate set handed to PeakFit. E.g. Threshold the image
    // and only use candidates that are in the foreground region.
    final double[][] cumul = histogramFailures(filterResult);
    // Create the overall match score
    final double[] total = new double[3];
    final ArrayList<ScoredSpot> allSpots = new ArrayList<>();
    filterResults.forEachValue(result -> {
        total[0] += result.result.getTruePositives();
        total[1] += result.result.getFalsePositives();
        total[2] += result.result.getFalseNegatives();
        allSpots.addAll(Arrays.asList(result.spots));
        return true;
    });
    double tp = total[0];
    double fp = total[1];
    final double fn = total[2];
    final FractionClassificationResult allResult = new FractionClassificationResult(tp, fp, 0, fn);
    // The number of actual results
    final double numberOfResults = (tp + fn);
    final StringBuilder sb = new StringBuilder();
    final double signal = (simulationParameters.minSignal + simulationParameters.maxSignal) * 0.5;
    // Create the benchmark settings and the fitting settings
    sb.append(imp.getStackSize()).append('\t');
    final int w = border.width;
    final int h = border.height;
    sb.append(w).append('\t');
    sb.append(h).append('\t');
    sb.append(MathUtils.rounded(numberOfResults)).append('\t');
    final double density = (numberOfResults / imp.getStackSize()) / (w * h) / (simulationParameters.pixelPitch * simulationParameters.pixelPitch / 1e6);
    sb.append(MathUtils.rounded(density)).append('\t');
    sb.append(MathUtils.rounded(signal)).append('\t');
    sb.append(MathUtils.rounded(simulationParameters.sd)).append('\t');
    sb.append(MathUtils.rounded(simulationParameters.pixelPitch)).append('\t');
    sb.append(MathUtils.rounded(simulationParameters.depth)).append('\t');
    sb.append(simulationParameters.fixedDepth).append('\t');
    // Camera specific
    CreateData.addCameraDescription(sb, simulationParameters).append('\t');
    sb.append(MathUtils.rounded(simulationParameters.background)).append('\t');
    sb.append(MathUtils.rounded(simulationParameters.noise)).append('\t');
    sb.append(MathUtils.rounded(signal / simulationParameters.noise)).append('\t');
    sb.append(MathUtils.rounded(simulationParameters.sd / simulationParameters.pixelPitch)).append('\t');
    sb.append(config.getDataFilterType()).append('\t');
    sb.append(spotFilter.getSearch()).append('\t');
    sb.append(spotFilter.getBorder()).append('\t');
    sb.append(MathUtils.rounded(spotFilter.getSpread())).append('\t');
    sb.append(config.getDataFilterMethod(0)).append('\t');
    final double param = config.getDataFilterParameterValue(0);
    final boolean absolute = config.getDataFilterParameterAbsolute(0);
    final double hwhmMin = config.getHwhmMin();
    if (absolute) {
        sb.append(MathUtils.rounded(param)).append('\t');
        sb.append(MathUtils.roundUsingDecimalPlacesToBigDecimal(param / hwhmMin, 3)).append('\t');
    } else {
        sb.append(MathUtils.roundUsingDecimalPlacesToBigDecimal(param * hwhmMin, 3)).append('\t');
        sb.append(MathUtils.rounded(param)).append('\t');
    }
    sb.append(spotFilter.getDescription()).append('\t');
    sb.append(border.x).append('\t');
    sb.append(Settings.MATCHING_METHOD[settings.matchingMethod]).append('\t');
    sb.append(MathUtils.rounded(lowerMatchDistance)).append('\t');
    sb.append(MathUtils.rounded(matchDistance)).append('\t');
    sb.append(MathUtils.rounded(settings.lowerSignalFactor)).append('\t');
    sb.append(MathUtils.rounded(settings.upperSignalFactor));
    filterResult.resultPrefix = sb.toString();
    // Add the results
    sb.append('\t');
    // Rank the scored spots by intensity
    Collections.sort(allSpots, ScoredSpot::compare);
    // Produce Recall, Precision, Jaccard for each cut of the spot candidates
    final double[] recall = new double[allSpots.size() + 1];
    final double[] precision = new double[recall.length];
    final double[] jaccard = new double[recall.length];
    final double[] correlation = new double[recall.length];
    final double[] truePositives = new double[recall.length];
    final double[] falsePositives = new double[recall.length];
    final double[] intensity = new double[recall.length];
    // Note: fn = n - tp
    tp = fp = 0;
    int index = 1;
    precision[0] = 1;
    final FastCorrelator corr = new FastCorrelator();
    double lastCorrelation = 0;
    double[] i1 = new double[recall.length];
    double[] i2 = new double[recall.length];
    int ci = 0;
    final SimpleRegression regression = new SimpleRegression(false);
    for (final ScoredSpot s : allSpots) {
        if (s.match) {
            // Score partial matches as part true-positive and part false-positive.
            // TP can be above 1 if we are allowing multiple matches.
            tp += s.getScore();
            fp += s.antiScore();
            // Just use a rounded intensity for now
            final double spotIntensity = s.getIntensity();
            final long v1 = Math.round(spotIntensity);
            final long v2 = Math.round(s.intensity);
            regression.addData(spotIntensity, s.intensity);
            i1[ci] = spotIntensity;
            i2[ci] = s.intensity;
            ci++;
            corr.add(v1, v2);
            lastCorrelation = corr.getCorrelation();
        } else {
            fp++;
        }
        recall[index] = tp / numberOfResults;
        precision[index] = tp / (tp + fp);
        // (tp+fp+fn) == (fp+n) since tp+fn=n
        jaccard[index] = tp / (fp + numberOfResults);
        correlation[index] = lastCorrelation;
        truePositives[index] = tp;
        falsePositives[index] = fp;
        intensity[index] = s.getIntensity();
        index++;
    }
    i1 = Arrays.copyOf(i1, ci);
    i2 = Arrays.copyOf(i2, ci);
    final double slope = regression.getSlope();
    sb.append(MathUtils.rounded(slope)).append('\t');
    addResult(sb, allResult, correlation[correlation.length - 1]);
    // Output the match results when the recall achieves the fraction of the maximum.
    double target = recall[recall.length - 1];
    if (settings.recallFraction < 100) {
        target *= settings.recallFraction / 100.0;
    }
    int fractionIndex = 0;
    while (fractionIndex < recall.length && recall[fractionIndex] < target) {
        fractionIndex++;
    }
    if (fractionIndex == recall.length) {
        fractionIndex--;
    }
    sb.append('\t');
    addResult(sb, new FractionClassificationResult(truePositives[fractionIndex], falsePositives[fractionIndex], 0, numberOfResults - truePositives[fractionIndex]), correlation[fractionIndex]);
    // Output the match results at the maximum jaccard score
    int maxIndex = 0;
    for (int ii = 1; ii < recall.length; ii++) {
        if (jaccard[maxIndex] < jaccard[ii]) {
            maxIndex = ii;
        }
    }
    sb.append('\t');
    addResult(sb, new FractionClassificationResult(truePositives[maxIndex], falsePositives[maxIndex], 0, numberOfResults - truePositives[maxIndex]), correlation[maxIndex]);
    sb.append(MathUtils.rounded(time / 1e6));
    // Calculate AUC (Average precision == Area Under Precision-Recall curve)
    final double auc = AucCalculator.auc(precision, recall);
    // Compute the AUC using the adjusted precision curve
    // which uses the maximum precision for recall >= r
    final double[] maxp = new double[precision.length];
    double max = 0;
    for (int k = maxp.length; k-- > 0; ) {
        if (max < precision[k]) {
            max = precision[k];
        }
        maxp[k] = max;
    }
    final double auc2 = AucCalculator.auc(maxp, recall);
    sb.append('\t').append(MathUtils.rounded(auc));
    sb.append('\t').append(MathUtils.rounded(auc2));
    // positives
    if (cumul[0].length != 0) {
        sb.append('\t').append(MathUtils.rounded(getFailures(cumul, 0.80)));
        sb.append('\t').append(MathUtils.rounded(getFailures(cumul, 0.90)));
        sb.append('\t').append(MathUtils.rounded(getFailures(cumul, 0.95)));
        sb.append('\t').append(MathUtils.rounded(getFailures(cumul, 0.99)));
        sb.append('\t').append(MathUtils.rounded(cumul[0][cumul[0].length - 1]));
    } else {
        sb.append("\t\t\t\t\t");
    }
    getTable(batchSummary).append(sb.toString());
    // Store results
    filterResult.auc = auc;
    filterResult.auc2 = auc2;
    filterResult.recall = recall;
    filterResult.precision = precision;
    filterResult.jaccard = jaccard;
    filterResult.correlation = correlation;
    filterResult.maxIndex = maxIndex;
    filterResult.fractionIndex = fractionIndex;
    filterResult.cumul = cumul;
    filterResult.slope = slope;
    filterResult.i1 = i1;
    filterResult.i2 = i2;
    filterResult.intensity = intensity;
    filterResult.time = time;
    filterResult.analysisBorder = this.border;
    return filterResult;
}
Also used : FastCorrelator(uk.ac.sussex.gdsc.core.utils.FastCorrelator) ArrayList(java.util.ArrayList) PeakResultPoint(uk.ac.sussex.gdsc.smlm.results.PeakResultPoint) BasePoint(uk.ac.sussex.gdsc.core.match.BasePoint) SimpleRegression(org.apache.commons.math3.stat.regression.SimpleRegression) FractionClassificationResult(uk.ac.sussex.gdsc.core.match.FractionClassificationResult)

Example 2 with FastCorrelator

use of uk.ac.sussex.gdsc.core.utils.FastCorrelator in project GDSC-SMLM by aherbert.

the class BenchmarkSpotFit method summariseResults.

private void summariseResults(BenchmarkSpotFitResult spotFitResults, long runTime, final PreprocessedPeakResult[] preprocessedPeakResults, int uniqueIdCount, CandidateData candidateData, TIntObjectHashMap<List<Coordinate>> actualCoordinates) {
    // Summarise the fitting results. N fits, N failures.
    // Optimal match statistics if filtering is perfect (since fitting is not perfect).
    final StoredDataStatistics distanceStats = new StoredDataStatistics();
    final StoredDataStatistics depthStats = new StoredDataStatistics();
    // Get stats for all fitted results and those that match
    // Signal, SNR, Width, xShift, yShift, Precision
    createFilterCriteria();
    final StoredDataStatistics[][] stats = new StoredDataStatistics[3][filterCriteria.length];
    for (int i = 0; i < stats.length; i++) {
        for (int j = 0; j < stats[i].length; j++) {
            stats[i][j] = new StoredDataStatistics();
        }
    }
    final double nmPerPixel = simulationParameters.pixelPitch;
    double tp = 0;
    double fp = 0;
    int failCtp = 0;
    int failCfp = 0;
    int ctp = 0;
    int cfp = 0;
    final int[] singleStatus = new int[FitStatus.values().length];
    final int[] multiStatus = new int[singleStatus.length];
    final int[] doubletStatus = new int[singleStatus.length];
    final int[] multiDoubletStatus = new int[singleStatus.length];
    // Easier to materialise the values since we have a lot of non final variables to manipulate
    final TIntObjectHashMap<FilterCandidates> fitResults = spotFitResults.fitResults;
    final int[] frames = new int[fitResults.size()];
    final FilterCandidates[] candidates = new FilterCandidates[fitResults.size()];
    final int[] counter = new int[1];
    fitResults.forEachEntry((frame, candidate) -> {
        frames[counter[0]] = frame;
        candidates[counter[0]] = candidate;
        counter[0]++;
        return true;
    });
    for (final FilterCandidates result : candidates) {
        // Count the number of fit results that matched (tp) and did not match (fp)
        tp += result.tp;
        fp += result.fp;
        for (int i = 0; i < result.fitResult.length; i++) {
            if (result.spots[i].match) {
                ctp++;
            } else {
                cfp++;
            }
            final MultiPathFitResult fitResult = result.fitResult[i];
            if (singleStatus != null && result.spots[i].match) {
                // Debugging reasons for fit failure
                addStatus(singleStatus, fitResult.getSingleFitResult());
                addStatus(multiStatus, fitResult.getMultiFitResult());
                addStatus(doubletStatus, fitResult.getDoubletFitResult());
                addStatus(multiDoubletStatus, fitResult.getMultiDoubletFitResult());
            }
            if (noMatch(fitResult)) {
                if (result.spots[i].match) {
                    failCtp++;
                } else {
                    failCfp++;
                }
            }
            // We have multi-path results.
            // We want statistics for:
            // [0] all fitted spots
            // [1] fitted spots that match a result
            // [2] fitted spots that do not match a result
            addToStats(fitResult.getSingleFitResult(), stats);
            addToStats(fitResult.getMultiFitResult(), stats);
            addToStats(fitResult.getDoubletFitResult(), stats);
            addToStats(fitResult.getMultiDoubletFitResult(), stats);
        }
        // Statistics on spots that fit an actual result
        for (int i = 0; i < result.match.length; i++) {
            if (!result.match[i].isFitResult()) {
                // For now just ignore the candidates that matched
                continue;
            }
            final FitMatch fitMatch = (FitMatch) result.match[i];
            distanceStats.add(fitMatch.distance * nmPerPixel);
            depthStats.add(fitMatch.zdepth * nmPerPixel);
        }
    }
    if (tp == 0) {
        IJ.error(TITLE, "No fit results matched the simulation actual results");
        return;
    }
    // Store data for computing correlation
    final double[] i1 = new double[depthStats.getN()];
    final double[] i2 = new double[i1.length];
    final double[] is = new double[i1.length];
    int ci = 0;
    for (final FilterCandidates result : candidates) {
        for (int i = 0; i < result.match.length; i++) {
            if (!result.match[i].isFitResult()) {
                // For now just ignore the candidates that matched
                continue;
            }
            final FitMatch fitMatch = (FitMatch) result.match[i];
            final ScoredSpot spot = result.spots[fitMatch.index];
            i1[ci] = fitMatch.predictedSignal;
            i2[ci] = fitMatch.actualSignal;
            is[ci] = spot.spot.intensity;
            ci++;
        }
    }
    // We want to compute the Jaccard against the spot metric
    // Filter the results using the multi-path filter
    final ArrayList<MultiPathFitResults> multiPathResults = new ArrayList<>(fitResults.size());
    for (int i = 0; i < frames.length; i++) {
        final int frame = frames[i];
        final MultiPathFitResult[] multiPathFitResults = candidates[i].fitResult;
        final int totalCandidates = candidates[i].spots.length;
        final List<Coordinate> list = actualCoordinates.get(frame);
        final int nActual = (list == null) ? 0 : list.size();
        multiPathResults.add(new MultiPathFitResults(frame, multiPathFitResults, totalCandidates, nActual));
    }
    // Score the results and count the number returned
    final List<FractionalAssignment[]> assignments = new ArrayList<>();
    final TIntHashSet set = new TIntHashSet(uniqueIdCount);
    final FractionScoreStore scoreStore = set::add;
    final MultiPathFitResults[] multiResults = multiPathResults.toArray(new MultiPathFitResults[0]);
    // Filter with no filter
    final MultiPathFilter mpf = new MultiPathFilter(new SignalFilter(0), null, multiFilter.residualsThreshold);
    mpf.fractionScoreSubset(multiResults, NullFailCounter.INSTANCE, this.results.size(), assignments, scoreStore, CoordinateStoreFactory.create(0, 0, imp.getWidth(), imp.getHeight(), config.convertUsingHwhMax(config.getDuplicateDistanceParameter())));
    final double[][] matchScores = new double[set.size()][];
    int count = 0;
    for (int i = 0; i < assignments.size(); i++) {
        final FractionalAssignment[] a = assignments.get(i);
        if (a == null) {
            continue;
        }
        for (int j = 0; j < a.length; j++) {
            final PreprocessedPeakResult r = ((PeakFractionalAssignment) a[j]).peakResult;
            set.remove(r.getUniqueId());
            final double precision = Math.sqrt(r.getLocationVariance());
            final double signal = r.getSignal();
            final double snr = r.getSnr();
            final double width = r.getXSdFactor();
            final double xShift = r.getXRelativeShift2();
            final double yShift = r.getYRelativeShift2();
            // Since these two are combined for filtering and the max is what matters.
            final double shift = (xShift > yShift) ? Math.sqrt(xShift) : Math.sqrt(yShift);
            final double eshift = Math.sqrt(xShift + yShift);
            final double[] score = new double[8];
            score[FILTER_SIGNAL] = signal;
            score[FILTER_SNR] = snr;
            score[FILTER_MIN_WIDTH] = width;
            score[FILTER_MAX_WIDTH] = width;
            score[FILTER_SHIFT] = shift;
            score[FILTER_ESHIFT] = eshift;
            score[FILTER_PRECISION] = precision;
            score[FILTER_PRECISION + 1] = a[j].getScore();
            matchScores[count++] = score;
        }
    }
    // Add the rest
    set.forEach(new CustomTIntProcedure(count) {

        @Override
        public boolean execute(int uniqueId) {
            // This should not be null or something has gone wrong
            final PreprocessedPeakResult r = preprocessedPeakResults[uniqueId];
            if (r == null) {
                throw new IllegalArgumentException("Missing result: " + uniqueId);
            }
            final double precision = Math.sqrt(r.getLocationVariance());
            final double signal = r.getSignal();
            final double snr = r.getSnr();
            final double width = r.getXSdFactor();
            final double xShift = r.getXRelativeShift2();
            final double yShift = r.getYRelativeShift2();
            // Since these two are combined for filtering and the max is what matters.
            final double shift = (xShift > yShift) ? Math.sqrt(xShift) : Math.sqrt(yShift);
            final double eshift = Math.sqrt(xShift + yShift);
            final double[] score = new double[8];
            score[FILTER_SIGNAL] = signal;
            score[FILTER_SNR] = snr;
            score[FILTER_MIN_WIDTH] = width;
            score[FILTER_MAX_WIDTH] = width;
            score[FILTER_SHIFT] = shift;
            score[FILTER_ESHIFT] = eshift;
            score[FILTER_PRECISION] = precision;
            matchScores[count++] = score;
            return true;
        }
    });
    final FitConfiguration fitConfig = config.getFitConfiguration();
    // Debug the reasons the fit failed
    if (singleStatus != null) {
        String name = PeakFit.getSolverName(fitConfig);
        if (fitConfig.getFitSolver() == FitSolver.MLE && fitConfig.isModelCamera()) {
            name += " Camera";
        }
        IJ.log("Failure counts: " + name);
        printFailures("Single", singleStatus);
        printFailures("Multi", multiStatus);
        printFailures("Doublet", doubletStatus);
        printFailures("Multi doublet", multiDoubletStatus);
    }
    final StringBuilder sb = new StringBuilder(300);
    // Add information about the simulation
    final double signal = simulationParameters.averageSignal;
    final int n = results.size();
    sb.append(imp.getStackSize()).append('\t');
    final int w = imp.getWidth();
    final int h = imp.getHeight();
    sb.append(w).append('\t');
    sb.append(h).append('\t');
    sb.append(n).append('\t');
    final double density = ((double) n / imp.getStackSize()) / (w * h) / (simulationParameters.pixelPitch * simulationParameters.pixelPitch / 1e6);
    sb.append(MathUtils.rounded(density)).append('\t');
    sb.append(MathUtils.rounded(signal)).append('\t');
    sb.append(MathUtils.rounded(simulationParameters.sd)).append('\t');
    sb.append(MathUtils.rounded(simulationParameters.pixelPitch)).append('\t');
    sb.append(MathUtils.rounded(simulationParameters.depth)).append('\t');
    sb.append(simulationParameters.fixedDepth).append('\t');
    sb.append(MathUtils.rounded(simulationParameters.gain)).append('\t');
    sb.append(MathUtils.rounded(simulationParameters.readNoise)).append('\t');
    sb.append(MathUtils.rounded(simulationParameters.background)).append('\t');
    sb.append(MathUtils.rounded(simulationParameters.noise)).append('\t');
    if (simulationParameters.fullSimulation) {
    // The total signal is spread over frames
    }
    sb.append(MathUtils.rounded(signal / simulationParameters.noise)).append('\t');
    sb.append(MathUtils.rounded(simulationParameters.sd / simulationParameters.pixelPitch)).append('\t');
    sb.append(spotFilter.getDescription());
    // nP and nN is the fractional score of the spot candidates
    addCount(sb, (double) candidateData.countPositive + candidateData.countNegative);
    addCount(sb, candidateData.countPositive);
    addCount(sb, candidateData.countNegative);
    addCount(sb, candidateData.fractionPositive);
    addCount(sb, candidateData.fractionNegative);
    String name = PeakFit.getSolverName(fitConfig);
    if (fitConfig.getFitSolver() == FitSolver.MLE && fitConfig.isModelCamera()) {
        name += " Camera";
    }
    add(sb, name);
    add(sb, config.getFitting());
    spotFitResults.resultPrefix = sb.toString();
    // Q. Should I add other fit configuration here?
    // The fraction of positive and negative candidates that were included
    add(sb, (100.0 * ctp) / candidateData.countPositive);
    add(sb, (100.0 * cfp) / candidateData.countNegative);
    // Score the fitting results compared to the original simulation.
    // Score the candidate selection:
    add(sb, ctp + cfp);
    add(sb, ctp);
    add(sb, cfp);
    // TP are all candidates that can be matched to a spot
    // FP are all candidates that cannot be matched to a spot
    // FN = The number of missed spots
    FractionClassificationResult match = new FractionClassificationResult(ctp, cfp, 0, simulationParameters.molecules - ctp);
    add(sb, match.getRecall());
    add(sb, match.getPrecision());
    add(sb, match.getF1Score());
    add(sb, match.getJaccard());
    // Score the fitting results:
    add(sb, failCtp);
    add(sb, failCfp);
    // TP are all fit results that can be matched to a spot
    // FP are all fit results that cannot be matched to a spot
    // FN = The number of missed spots
    add(sb, tp);
    add(sb, fp);
    match = new FractionClassificationResult(tp, fp, 0, simulationParameters.molecules - tp);
    add(sb, match.getRecall());
    add(sb, match.getPrecision());
    add(sb, match.getF1Score());
    add(sb, match.getJaccard());
    // Do it again but pretend we can perfectly filter all the false positives
    // add(sb, tp);
    match = new FractionClassificationResult(tp, 0, 0, simulationParameters.molecules - tp);
    // Recall is unchanged
    // Precision will be 100%
    add(sb, match.getF1Score());
    add(sb, match.getJaccard());
    // The mean may be subject to extreme outliers so use the median
    double median = distanceStats.getMedian();
    add(sb, median);
    final WindowOrganiser wo = new WindowOrganiser();
    String label = String.format("Recall = %s. n = %d. Median = %s nm. SD = %s nm", MathUtils.rounded(match.getRecall()), distanceStats.getN(), MathUtils.rounded(median), MathUtils.rounded(distanceStats.getStandardDeviation()));
    new HistogramPlotBuilder(TITLE, distanceStats, "Match Distance (nm)").setPlotLabel(label).show(wo);
    median = depthStats.getMedian();
    add(sb, median);
    // Sort by spot intensity and produce correlation
    double[] correlation = null;
    double[] rankCorrelation = null;
    double[] rank = null;
    final FastCorrelator fastCorrelator = new FastCorrelator();
    final ArrayList<Ranking> pc1 = new ArrayList<>();
    final ArrayList<Ranking> pc2 = new ArrayList<>();
    ci = 0;
    if (settings.showCorrelation) {
        final int[] indices = SimpleArrayUtils.natural(i1.length);
        SortUtils.sortData(indices, is, settings.rankByIntensity, true);
        correlation = new double[i1.length];
        rankCorrelation = new double[i1.length];
        rank = new double[i1.length];
        for (final int ci2 : indices) {
            fastCorrelator.add(Math.round(i1[ci2]), Math.round(i2[ci2]));
            pc1.add(new Ranking(i1[ci2], ci));
            pc2.add(new Ranking(i2[ci2], ci));
            correlation[ci] = fastCorrelator.getCorrelation();
            rankCorrelation[ci] = Correlator.correlation(rank(pc1), rank(pc2));
            if (settings.rankByIntensity) {
                rank[ci] = is[0] - is[ci];
            } else {
                rank[ci] = ci;
            }
            ci++;
        }
    } else {
        for (int i = 0; i < i1.length; i++) {
            fastCorrelator.add(Math.round(i1[i]), Math.round(i2[i]));
            pc1.add(new Ranking(i1[i], i));
            pc2.add(new Ranking(i2[i], i));
        }
    }
    final double pearsonCorr = fastCorrelator.getCorrelation();
    final double rankedCorr = Correlator.correlation(rank(pc1), rank(pc2));
    // Get the regression
    final SimpleRegression regression = new SimpleRegression(false);
    for (int i = 0; i < pc1.size(); i++) {
        regression.addData(pc1.get(i).value, pc2.get(i).value);
    }
    // final double intercept = regression.getIntercept();
    final double slope = regression.getSlope();
    if (settings.showCorrelation) {
        String title = TITLE + " Intensity";
        Plot plot = new Plot(title, "Candidate", "Spot");
        final double[] limits1 = MathUtils.limits(i1);
        final double[] limits2 = MathUtils.limits(i2);
        plot.setLimits(limits1[0], limits1[1], limits2[0], limits2[1]);
        label = String.format("Correlation=%s; Ranked=%s; Slope=%s", MathUtils.rounded(pearsonCorr), MathUtils.rounded(rankedCorr), MathUtils.rounded(slope));
        plot.addLabel(0, 0, label);
        plot.setColor(Color.red);
        plot.addPoints(i1, i2, Plot.DOT);
        if (slope > 1) {
            plot.drawLine(limits1[0], limits1[0] * slope, limits1[1], limits1[1] * slope);
        } else {
            plot.drawLine(limits2[0] / slope, limits2[0], limits2[1] / slope, limits2[1]);
        }
        ImageJUtils.display(title, plot, wo);
        title = TITLE + " Correlation";
        plot = new Plot(title, "Spot Rank", "Correlation");
        final double[] xlimits = MathUtils.limits(rank);
        double[] ylimits = MathUtils.limits(correlation);
        ylimits = MathUtils.limits(ylimits, rankCorrelation);
        plot.setLimits(xlimits[0], xlimits[1], ylimits[0], ylimits[1]);
        plot.setColor(Color.red);
        plot.addPoints(rank, correlation, Plot.LINE);
        plot.setColor(Color.blue);
        plot.addPoints(rank, rankCorrelation, Plot.LINE);
        plot.setColor(Color.black);
        plot.addLabel(0, 0, label);
        ImageJUtils.display(title, plot, wo);
    }
    add(sb, pearsonCorr);
    add(sb, rankedCorr);
    add(sb, slope);
    label = String.format("n = %d. Median = %s nm", depthStats.getN(), MathUtils.rounded(median));
    new HistogramPlotBuilder(TITLE, depthStats, "Match Depth (nm)").setRemoveOutliersOption(1).setPlotLabel(label).show(wo);
    // Plot histograms of the stats on the same window
    final double[] lower = new double[filterCriteria.length];
    final double[] upper = new double[lower.length];
    final double[] min = new double[lower.length];
    final double[] max = new double[lower.length];
    for (int i = 0; i < stats[0].length; i++) {
        final double[] limits = showDoubleHistogram(stats, i, wo, matchScores);
        lower[i] = limits[0];
        upper[i] = limits[1];
        min[i] = limits[2];
        max[i] = limits[3];
    }
    // Reconfigure some of the range limits
    // Make this a bit bigger
    upper[FILTER_SIGNAL] *= 2;
    // Make this a bit bigger
    upper[FILTER_SNR] *= 2;
    final double factor = 0.25;
    if (lower[FILTER_MIN_WIDTH] != 0) {
        // (assuming lower is less than 1)
        upper[FILTER_MIN_WIDTH] = 1 - Math.max(0, factor * (1 - lower[FILTER_MIN_WIDTH]));
    }
    if (upper[FILTER_MIN_WIDTH] != 0) {
        // (assuming upper is more than 1)
        lower[FILTER_MAX_WIDTH] = 1 + Math.max(0, factor * (upper[FILTER_MAX_WIDTH] - 1));
    }
    // Round the ranges
    final double[] interval = new double[stats[0].length];
    interval[FILTER_SIGNAL] = SignalFilter.DEFAULT_INCREMENT;
    interval[FILTER_SNR] = SnrFilter.DEFAULT_INCREMENT;
    interval[FILTER_MIN_WIDTH] = WidthFilter2.DEFAULT_MIN_INCREMENT;
    interval[FILTER_MAX_WIDTH] = WidthFilter.DEFAULT_INCREMENT;
    interval[FILTER_SHIFT] = ShiftFilter.DEFAULT_INCREMENT;
    interval[FILTER_ESHIFT] = EShiftFilter.DEFAULT_INCREMENT;
    interval[FILTER_PRECISION] = PrecisionFilter.DEFAULT_INCREMENT;
    interval[FILTER_ITERATIONS] = 0.1;
    interval[FILTER_EVALUATIONS] = 0.1;
    // Create a range increment
    final double[] increment = new double[lower.length];
    for (int i = 0; i < increment.length; i++) {
        lower[i] = MathUtils.floor(lower[i], interval[i]);
        upper[i] = MathUtils.ceil(upper[i], interval[i]);
        final double range = upper[i] - lower[i];
        // Allow clipping if the range is small compared to the min increment
        double multiples = range / interval[i];
        // Use 8 multiples for the equivalent of +/- 4 steps around the centre
        if (multiples < 8) {
            multiples = Math.ceil(multiples);
        } else {
            multiples = 8;
        }
        increment[i] = MathUtils.ceil(range / multiples, interval[i]);
        if (i == FILTER_MIN_WIDTH) {
            // Requires clipping based on the upper limit
            lower[i] = upper[i] - increment[i] * multiples;
        } else {
            upper[i] = lower[i] + increment[i] * multiples;
        }
    }
    for (int i = 0; i < stats[0].length; i++) {
        lower[i] = MathUtils.round(lower[i]);
        upper[i] = MathUtils.round(upper[i]);
        min[i] = MathUtils.round(min[i]);
        max[i] = MathUtils.round(max[i]);
        increment[i] = MathUtils.round(increment[i]);
        sb.append('\t').append(min[i]).append(':').append(lower[i]).append('-').append(upper[i]).append(':').append(max[i]);
    }
    // Disable some filters
    increment[FILTER_SIGNAL] = Double.POSITIVE_INFINITY;
    // increment[FILTER_SHIFT] = Double.POSITIVE_INFINITY;
    increment[FILTER_ESHIFT] = Double.POSITIVE_INFINITY;
    wo.tile();
    sb.append('\t').append(TextUtils.nanosToString(runTime));
    createTable().append(sb.toString());
    if (settings.saveFilterRange) {
        GUIFilterSettings filterSettings = SettingsManager.readGuiFilterSettings(0);
        String filename = (silent) ? filterSettings.getFilterSetFilename() : ImageJUtils.getFilename("Filter_range_file", filterSettings.getFilterSetFilename());
        if (filename == null) {
            return;
        }
        // Remove extension to store the filename
        filename = FileUtils.replaceExtension(filename, ".xml");
        filterSettings = filterSettings.toBuilder().setFilterSetFilename(filename).build();
        // Create a filter set using the ranges
        final ArrayList<Filter> filters = new ArrayList<>(4);
        // Create the multi-filter using the same precision type as that used during fitting.
        // Currently no support for z-filter as 3D astigmatism fitting is experimental.
        final PrecisionMethod precisionMethod = getPrecisionMethod((DirectFilter) multiFilter.getFilter());
        Function<double[], Filter> generator;
        if (precisionMethod == PrecisionMethod.POISSON_CRLB) {
            generator = parameters -> new MultiFilterCrlb(parameters[FILTER_SIGNAL], (float) parameters[FILTER_SNR], parameters[FILTER_MIN_WIDTH], parameters[FILTER_MAX_WIDTH], parameters[FILTER_SHIFT], parameters[FILTER_ESHIFT], parameters[FILTER_PRECISION], 0f, 0f);
        } else if (precisionMethod == PrecisionMethod.MORTENSEN) {
            generator = parameters -> new MultiFilter(parameters[FILTER_SIGNAL], (float) parameters[FILTER_SNR], parameters[FILTER_MIN_WIDTH], parameters[FILTER_MAX_WIDTH], parameters[FILTER_SHIFT], parameters[FILTER_ESHIFT], parameters[FILTER_PRECISION], 0f, 0f);
        } else {
            // Default
            generator = parameters -> new MultiFilter2(parameters[FILTER_SIGNAL], (float) parameters[FILTER_SNR], parameters[FILTER_MIN_WIDTH], parameters[FILTER_MAX_WIDTH], parameters[FILTER_SHIFT], parameters[FILTER_ESHIFT], parameters[FILTER_PRECISION], 0f, 0f);
        }
        filters.add(generator.apply(lower));
        filters.add(generator.apply(upper));
        filters.add(generator.apply(increment));
        if (saveFilters(filename, filters)) {
            SettingsManager.writeSettings(filterSettings);
        }
        // Create a filter set using the min/max and the initial bounds.
        // Set sensible limits
        min[FILTER_SIGNAL] = Math.max(min[FILTER_SIGNAL], 30);
        max[FILTER_SNR] = Math.min(max[FILTER_SNR], 10000);
        max[FILTER_PRECISION] = Math.min(max[FILTER_PRECISION], 100);
        // Make the 4-set filters the same as the 3-set filters.
        filters.clear();
        filters.add(generator.apply(min));
        filters.add(generator.apply(lower));
        filters.add(generator.apply(upper));
        filters.add(generator.apply(max));
        saveFilters(FileUtils.replaceExtension(filename, ".4.xml"), filters);
    }
    spotFitResults.min = min;
    spotFitResults.max = max;
}
Also used : Color(java.awt.Color) PeakResultPoint(uk.ac.sussex.gdsc.smlm.results.PeakResultPoint) Arrays(java.util.Arrays) CoordinateStoreFactory(uk.ac.sussex.gdsc.smlm.results.filter.CoordinateStoreFactory) HistogramPlotBuilder(uk.ac.sussex.gdsc.core.ij.HistogramPlot.HistogramPlotBuilder) BasePreprocessedPeakResult(uk.ac.sussex.gdsc.smlm.results.filter.BasePreprocessedPeakResult) MultiPathFitResults(uk.ac.sussex.gdsc.smlm.results.filter.MultiPathFitResults) Filter(uk.ac.sussex.gdsc.smlm.results.filter.Filter) HelpUrls(uk.ac.sussex.gdsc.smlm.ij.plugins.HelpUrls) Pair(org.apache.commons.lang3.tuple.Pair) MemoryPeakResults(uk.ac.sussex.gdsc.smlm.results.MemoryPeakResults) FilterValidationFlag(uk.ac.sussex.gdsc.smlm.results.filter.FilterValidationFlag) FitProtosHelper(uk.ac.sussex.gdsc.smlm.data.config.FitProtosHelper) ImageJImageConverter(uk.ac.sussex.gdsc.smlm.ij.utils.ImageJImageConverter) PrecisionFilter(uk.ac.sussex.gdsc.smlm.results.filter.PrecisionFilter) WidthFilter2(uk.ac.sussex.gdsc.smlm.results.filter.WidthFilter2) LinearInterpolator(org.apache.commons.math3.analysis.interpolation.LinearInterpolator) BlockingQueue(java.util.concurrent.BlockingQueue) StopWatch(org.apache.commons.lang3.time.StopWatch) ConcurrencyUtils(uk.ac.sussex.gdsc.core.utils.concurrent.ConcurrencyUtils) MultiPathFitResult(uk.ac.sussex.gdsc.smlm.results.filter.MultiPathFitResult) TextUtils(uk.ac.sussex.gdsc.core.utils.TextUtils) Plot(ij.gui.Plot) PeakFit(uk.ac.sussex.gdsc.smlm.ij.plugins.PeakFit) TIntHashSet(gnu.trove.set.hash.TIntHashSet) ImagePlus(ij.ImagePlus) ArrayBlockingQueue(java.util.concurrent.ArrayBlockingQueue) TextArea(java.awt.TextArea) PeakFractionalAssignment(uk.ac.sussex.gdsc.smlm.results.filter.PeakFractionalAssignment) XmlUtils(uk.ac.sussex.gdsc.core.utils.XmlUtils) ShiftFilter(uk.ac.sussex.gdsc.smlm.results.filter.ShiftFilter) FileUtils(uk.ac.sussex.gdsc.core.utils.FileUtils) PlugIn(ij.plugin.PlugIn) MultiPathFilter(uk.ac.sussex.gdsc.smlm.results.filter.MultiPathFilter) PolynomialSplineFunction(org.apache.commons.math3.analysis.polynomials.PolynomialSplineFunction) Prefs(ij.Prefs) TIntProcedure(gnu.trove.procedure.TIntProcedure) ArrayList(java.util.ArrayList) SortUtils(uk.ac.sussex.gdsc.core.utils.SortUtils) SignalFilter(uk.ac.sussex.gdsc.smlm.results.filter.SignalFilter) FitConfiguration(uk.ac.sussex.gdsc.smlm.engine.FitConfiguration) BenchmarkSpotFilterResult(uk.ac.sussex.gdsc.smlm.ij.plugins.benchmark.BenchmarkSpotFilter.BenchmarkSpotFilterResult) FitEngineConfigurationProvider(uk.ac.sussex.gdsc.smlm.ij.plugins.PeakFit.FitEngineConfigurationProvider) Assignment(uk.ac.sussex.gdsc.core.match.Assignment) FitWorker(uk.ac.sussex.gdsc.smlm.engine.FitWorker) MultiFilterCrlb(uk.ac.sussex.gdsc.smlm.results.filter.MultiFilterCrlb) FileOutputStream(java.io.FileOutputStream) FilterResult(uk.ac.sussex.gdsc.smlm.ij.plugins.benchmark.BenchmarkSpotFilter.FilterResult) FractionClassificationResult(uk.ac.sussex.gdsc.core.match.FractionClassificationResult) DirectFilter(uk.ac.sussex.gdsc.smlm.results.filter.DirectFilter) ResultsMatchCalculator(uk.ac.sussex.gdsc.smlm.ij.plugins.ResultsMatchCalculator) PreprocessedPeakResult(uk.ac.sussex.gdsc.smlm.results.filter.PreprocessedPeakResult) Percentile(org.apache.commons.math3.stat.descriptive.rank.Percentile) EShiftFilter(uk.ac.sussex.gdsc.smlm.results.filter.EShiftFilter) DescriptiveStatistics(org.apache.commons.math3.stat.descriptive.DescriptiveStatistics) ImageStack(ij.ImageStack) MaximaSpotFilter(uk.ac.sussex.gdsc.smlm.filters.MaximaSpotFilter) FitTask(uk.ac.sussex.gdsc.smlm.engine.FitParameters.FitTask) NullFailCounter(uk.ac.sussex.gdsc.smlm.results.count.NullFailCounter) FractionScoreStore(uk.ac.sussex.gdsc.smlm.results.filter.MultiPathFilter.FractionScoreStore) TIntObjectHashMap(gnu.trove.map.hash.TIntObjectHashMap) TextWindow(ij.text.TextWindow) Spot(uk.ac.sussex.gdsc.smlm.filters.Spot) ItemListener(java.awt.event.ItemListener) FitSolver(uk.ac.sussex.gdsc.smlm.data.config.FitProtos.FitSolver) ParameterType(uk.ac.sussex.gdsc.smlm.results.filter.ParameterType) StoredDataStatistics(uk.ac.sussex.gdsc.core.utils.StoredDataStatistics) OutOfRangeException(org.apache.commons.math3.exception.OutOfRangeException) AtomicInteger(java.util.concurrent.atomic.AtomicInteger) AssignmentComparator(uk.ac.sussex.gdsc.core.match.AssignmentComparator) PeakResults(uk.ac.sussex.gdsc.smlm.results.PeakResults) ResultAssignment(uk.ac.sussex.gdsc.smlm.results.filter.ResultAssignment) PsfCalculator(uk.ac.sussex.gdsc.smlm.ij.plugins.PsfCalculator) PlotWindow(ij.gui.PlotWindow) MathUtils(uk.ac.sussex.gdsc.core.utils.MathUtils) FitParameters(uk.ac.sussex.gdsc.smlm.engine.FitParameters) SettingsManager(uk.ac.sussex.gdsc.smlm.ij.settings.SettingsManager) ItemEvent(java.awt.event.ItemEvent) BasePoint(uk.ac.sussex.gdsc.core.match.BasePoint) ExtendedGenericDialog(uk.ac.sussex.gdsc.core.ij.gui.ExtendedGenericDialog) FitEngineConfiguration(uk.ac.sussex.gdsc.smlm.engine.FitEngineConfiguration) Coordinate(uk.ac.sussex.gdsc.core.match.Coordinate) FractionalAssignment(uk.ac.sussex.gdsc.core.match.FractionalAssignment) FilterXStreamUtils(uk.ac.sussex.gdsc.smlm.results.filter.FilterXStreamUtils) FitStatus(uk.ac.sussex.gdsc.smlm.fitting.FitStatus) List(java.util.List) PointPair(uk.ac.sussex.gdsc.core.match.PointPair) SimpleArrayUtils(uk.ac.sussex.gdsc.core.utils.SimpleArrayUtils) ParameterisedFitJob(uk.ac.sussex.gdsc.smlm.engine.ParameterisedFitJob) Rectangle(java.awt.Rectangle) FastCorrelator(uk.ac.sussex.gdsc.core.utils.FastCorrelator) PrecisionMethod(uk.ac.sussex.gdsc.smlm.data.config.FitProtos.PrecisionMethod) ImmutableFractionalAssignment(uk.ac.sussex.gdsc.core.match.ImmutableFractionalAssignment) MultiFilter(uk.ac.sussex.gdsc.smlm.results.filter.MultiFilter) WindowOrganiser(uk.ac.sussex.gdsc.core.ij.plugin.WindowOrganiser) ScoredSpot(uk.ac.sussex.gdsc.smlm.ij.plugins.benchmark.BenchmarkSpotFilter.ScoredSpot) AtomicReference(java.util.concurrent.atomic.AtomicReference) Function(java.util.function.Function) TextField(java.awt.TextField) IJImageSource(uk.ac.sussex.gdsc.smlm.ij.IJImageSource) Correlator(uk.ac.sussex.gdsc.core.utils.Correlator) NoiseEstimatorMethod(uk.ac.sussex.gdsc.smlm.data.config.FitProtos.NoiseEstimatorMethod) LinkedList(java.util.LinkedList) ConcurrentRuntimeException(org.apache.commons.lang3.concurrent.ConcurrentRuntimeException) WidthFilter(uk.ac.sussex.gdsc.smlm.results.filter.WidthFilter) GUIFilterSettings(uk.ac.sussex.gdsc.smlm.ij.settings.GUIProtos.GUIFilterSettings) RampedScore(uk.ac.sussex.gdsc.core.utils.RampedScore) FitResult(uk.ac.sussex.gdsc.smlm.fitting.FitResult) Checkbox(java.awt.Checkbox) FilterSet(uk.ac.sussex.gdsc.smlm.results.filter.FilterSet) Ticker(uk.ac.sussex.gdsc.core.logging.Ticker) SnrFilter(uk.ac.sussex.gdsc.smlm.results.filter.SnrFilter) MultiFilter2(uk.ac.sussex.gdsc.smlm.results.filter.MultiFilter2) SimpleRegression(org.apache.commons.math3.stat.regression.SimpleRegression) HistogramPlot(uk.ac.sussex.gdsc.core.ij.HistogramPlot) ImageJUtils(uk.ac.sussex.gdsc.core.ij.ImageJUtils) SynchronizedPeakResults(uk.ac.sussex.gdsc.smlm.results.SynchronizedPeakResults) IJ(ij.IJ) SmlmUsageTracker(uk.ac.sussex.gdsc.smlm.ij.plugins.SmlmUsageTracker) Collections(java.util.Collections) ArrayList(java.util.ArrayList) HistogramPlotBuilder(uk.ac.sussex.gdsc.core.ij.HistogramPlot.HistogramPlotBuilder) PrecisionMethod(uk.ac.sussex.gdsc.smlm.data.config.FitProtos.PrecisionMethod) MultiPathFitResult(uk.ac.sussex.gdsc.smlm.results.filter.MultiPathFitResult) MultiFilterCrlb(uk.ac.sussex.gdsc.smlm.results.filter.MultiFilterCrlb) PeakFractionalAssignment(uk.ac.sussex.gdsc.smlm.results.filter.PeakFractionalAssignment) FractionalAssignment(uk.ac.sussex.gdsc.core.match.FractionalAssignment) ImmutableFractionalAssignment(uk.ac.sussex.gdsc.core.match.ImmutableFractionalAssignment) FractionClassificationResult(uk.ac.sussex.gdsc.core.match.FractionClassificationResult) BasePreprocessedPeakResult(uk.ac.sussex.gdsc.smlm.results.filter.BasePreprocessedPeakResult) PreprocessedPeakResult(uk.ac.sussex.gdsc.smlm.results.filter.PreprocessedPeakResult) ScoredSpot(uk.ac.sussex.gdsc.smlm.ij.plugins.benchmark.BenchmarkSpotFilter.ScoredSpot) FastCorrelator(uk.ac.sussex.gdsc.core.utils.FastCorrelator) Plot(ij.gui.Plot) HistogramPlot(uk.ac.sussex.gdsc.core.ij.HistogramPlot) StoredDataStatistics(uk.ac.sussex.gdsc.core.utils.StoredDataStatistics) Coordinate(uk.ac.sussex.gdsc.core.match.Coordinate) FitConfiguration(uk.ac.sussex.gdsc.smlm.engine.FitConfiguration) MultiPathFilter(uk.ac.sussex.gdsc.smlm.results.filter.MultiPathFilter) TIntHashSet(gnu.trove.set.hash.TIntHashSet) GUIFilterSettings(uk.ac.sussex.gdsc.smlm.ij.settings.GUIProtos.GUIFilterSettings) SignalFilter(uk.ac.sussex.gdsc.smlm.results.filter.SignalFilter) WindowOrganiser(uk.ac.sussex.gdsc.core.ij.plugin.WindowOrganiser) MultiFilter(uk.ac.sussex.gdsc.smlm.results.filter.MultiFilter) PeakResultPoint(uk.ac.sussex.gdsc.smlm.results.PeakResultPoint) BasePoint(uk.ac.sussex.gdsc.core.match.BasePoint) PeakFractionalAssignment(uk.ac.sussex.gdsc.smlm.results.filter.PeakFractionalAssignment) FractionScoreStore(uk.ac.sussex.gdsc.smlm.results.filter.MultiPathFilter.FractionScoreStore) SimpleRegression(org.apache.commons.math3.stat.regression.SimpleRegression) Filter(uk.ac.sussex.gdsc.smlm.results.filter.Filter) PrecisionFilter(uk.ac.sussex.gdsc.smlm.results.filter.PrecisionFilter) ShiftFilter(uk.ac.sussex.gdsc.smlm.results.filter.ShiftFilter) MultiPathFilter(uk.ac.sussex.gdsc.smlm.results.filter.MultiPathFilter) SignalFilter(uk.ac.sussex.gdsc.smlm.results.filter.SignalFilter) DirectFilter(uk.ac.sussex.gdsc.smlm.results.filter.DirectFilter) EShiftFilter(uk.ac.sussex.gdsc.smlm.results.filter.EShiftFilter) MaximaSpotFilter(uk.ac.sussex.gdsc.smlm.filters.MaximaSpotFilter) MultiFilter(uk.ac.sussex.gdsc.smlm.results.filter.MultiFilter) WidthFilter(uk.ac.sussex.gdsc.smlm.results.filter.WidthFilter) SnrFilter(uk.ac.sussex.gdsc.smlm.results.filter.SnrFilter) MultiFilter2(uk.ac.sussex.gdsc.smlm.results.filter.MultiFilter2) MultiPathFitResults(uk.ac.sussex.gdsc.smlm.results.filter.MultiPathFitResults)

Aggregations

ArrayList (java.util.ArrayList)2 SimpleRegression (org.apache.commons.math3.stat.regression.SimpleRegression)2 TIntObjectHashMap (gnu.trove.map.hash.TIntObjectHashMap)1 TIntProcedure (gnu.trove.procedure.TIntProcedure)1 TIntHashSet (gnu.trove.set.hash.TIntHashSet)1 IJ (ij.IJ)1 ImagePlus (ij.ImagePlus)1 ImageStack (ij.ImageStack)1 Prefs (ij.Prefs)1 Plot (ij.gui.Plot)1 PlotWindow (ij.gui.PlotWindow)1 PlugIn (ij.plugin.PlugIn)1 TextWindow (ij.text.TextWindow)1 Checkbox (java.awt.Checkbox)1 Color (java.awt.Color)1 Rectangle (java.awt.Rectangle)1 TextArea (java.awt.TextArea)1 TextField (java.awt.TextField)1 ItemEvent (java.awt.event.ItemEvent)1 ItemListener (java.awt.event.ItemListener)1