use of com.jme3.math.Quaternion in project jmonkeyengine by jMonkeyEngine.
the class TestBetterCharacter method simpleInitApp.
@Override
public void simpleInitApp() {
//setup keyboard mapping
setupKeys();
// activate physics
bulletAppState = new BulletAppState();
stateManager.attach(bulletAppState);
bulletAppState.setDebugEnabled(true);
// init a physics test scene
PhysicsTestHelper.createPhysicsTestWorldSoccer(rootNode, assetManager, bulletAppState.getPhysicsSpace());
PhysicsTestHelper.createBallShooter(this, rootNode, bulletAppState.getPhysicsSpace());
setupPlanet();
// Create a node for the character model
characterNode = new Node("character node");
characterNode.setLocalTranslation(new Vector3f(4, 5, 2));
// Add a character control to the node so we can add other things and
// control the model rotation
physicsCharacter = new BetterCharacterControl(0.3f, 2.5f, 8f);
characterNode.addControl(physicsCharacter);
getPhysicsSpace().add(physicsCharacter);
// Load model, attach to character node
Node model = (Node) assetManager.loadModel("Models/Jaime/Jaime.j3o");
model.setLocalScale(1.50f);
characterNode.attachChild(model);
// Add character node to the rootNode
rootNode.attachChild(characterNode);
// Set forward camera node that follows the character, only used when
// view is "locked"
camNode = new CameraNode("CamNode", cam);
camNode.setControlDir(ControlDirection.SpatialToCamera);
camNode.setLocalTranslation(new Vector3f(0, 2, -6));
Quaternion quat = new Quaternion();
// These coordinates are local, the camNode is attached to the character node!
quat.lookAt(Vector3f.UNIT_Z, Vector3f.UNIT_Y);
camNode.setLocalRotation(quat);
characterNode.attachChild(camNode);
// Disable by default, can be enabled via keyboard shortcut
camNode.setEnabled(false);
}
use of com.jme3.math.Quaternion in project jmonkeyengine by jMonkeyEngine.
the class TestHoveringTank method buildPlayer.
private void buildPlayer() {
spaceCraft = assetManager.loadModel("Models/HoverTank/Tank2.mesh.xml");
CollisionShape colShape = CollisionShapeFactory.createDynamicMeshShape(spaceCraft);
spaceCraft.setShadowMode(ShadowMode.CastAndReceive);
spaceCraft.setLocalTranslation(new Vector3f(-140, 50, -23));
spaceCraft.setLocalRotation(new Quaternion(new float[] { 0, 0.01f, 0 }));
hoverControl = new PhysicsHoverControl(colShape, 500);
spaceCraft.addControl(hoverControl);
rootNode.attachChild(spaceCraft);
getPhysicsSpace().add(hoverControl);
hoverControl.setCollisionGroup(PhysicsCollisionObject.COLLISION_GROUP_02);
ChaseCamera chaseCam = new ChaseCamera(cam, inputManager);
spaceCraft.addControl(chaseCam);
flyCam.setEnabled(false);
}
use of com.jme3.math.Quaternion in project jmonkeyengine by jMonkeyEngine.
the class SimulationNode method simulateSkeleton.
/**
* Simulates the bone node.
*/
private void simulateSkeleton() {
LOGGER.fine("Simulating skeleton.");
Set<Long> alteredOmas = new HashSet<Long>();
if (animations != null) {
TempVars vars = TempVars.get();
AnimChannel animChannel = animControl.createChannel();
for (Animation animation : animations) {
float[] animationTimeBoundaries = this.computeAnimationTimeBoundaries(animation);
int maxFrame = (int) animationTimeBoundaries[0];
float maxTime = animationTimeBoundaries[1];
Map<Integer, VirtualTrack> tracks = new HashMap<Integer, VirtualTrack>();
for (int frame = 0; frame < maxFrame; ++frame) {
// this MUST be done here, otherwise setting next frame of animation will
// lead to possible errors
this.reset();
// first set proper time for all bones in all the tracks ...
for (Track track : animation.getTracks()) {
float time = ((BoneTrack) track).getTimes()[frame];
track.setTime(time, 1, animControl, animChannel, vars);
skeleton.updateWorldVectors();
}
// ... and then apply constraints from the root bone to the last child ...
Set<Long> applied = new HashSet<Long>();
for (Bone rootBone : skeleton.getRoots()) {
// ignore the 0-indexed bone
if (skeleton.getBoneIndex(rootBone) > 0) {
this.applyConstraints(rootBone, alteredOmas, applied, frame, new Stack<Bone>());
}
}
// ... add virtual tracks if neccessary, for bones that were altered but had no tracks before ...
for (Long boneOMA : alteredOmas) {
BoneContext boneContext = blenderContext.getBoneContext(boneOMA);
int boneIndex = skeleton.getBoneIndex(boneContext.getBone());
if (!tracks.containsKey(boneIndex)) {
tracks.put(boneIndex, new VirtualTrack(boneContext.getBone().getName(), maxFrame, maxTime));
}
}
alteredOmas.clear();
// ... and fill in another frame in the result track
for (Entry<Integer, VirtualTrack> trackEntry : tracks.entrySet()) {
Bone bone = skeleton.getBone(trackEntry.getKey());
Transform startTransform = boneStartTransforms.get(bone);
// track contains differences between the frame position and bind positions of bones/spatials
Vector3f bonePositionDifference = bone.getLocalPosition().subtract(startTransform.getTranslation());
Quaternion boneRotationDifference = startTransform.getRotation().inverse().mult(bone.getLocalRotation()).normalizeLocal();
Vector3f boneScaleDifference = bone.getLocalScale().divide(startTransform.getScale());
trackEntry.getValue().setTransform(frame, new Transform(bonePositionDifference, boneRotationDifference, boneScaleDifference));
}
}
for (Entry<Integer, VirtualTrack> trackEntry : tracks.entrySet()) {
Track newTrack = trackEntry.getValue().getAsBoneTrack(trackEntry.getKey());
if (newTrack != null) {
boolean trackReplaced = false;
for (Track track : animation.getTracks()) {
if (((BoneTrack) track).getTargetBoneIndex() == trackEntry.getKey().intValue()) {
animation.removeTrack(track);
animation.addTrack(newTrack);
trackReplaced = true;
break;
}
}
if (!trackReplaced) {
animation.addTrack(newTrack);
}
}
}
}
vars.release();
animControl.clearChannels();
this.reset();
}
}
use of com.jme3.math.Quaternion in project jmonkeyengine by jMonkeyEngine.
the class Ipo method calculateTrack.
/**
* This method calculates the value of the curves as a bone track between
* the specified frames.
*
* @param targetIndex
* the index of the target for which the method calculates the
* tracks IMPORTANT! Aet to -1 (or any negative number) if you
* want to load spatial animation.
* @param localTranslation
* the local translation of the object/bone that will be animated by
* the track
* @param localRotation
* the local rotation of the object/bone that will be animated by
* the track
* @param localScale
* the local scale of the object/bone that will be animated by
* the track
* @param startFrame
* the first frame of tracks (inclusive)
* @param stopFrame
* the last frame of the tracks (inclusive)
* @param fps
* frame rate (frames per second)
* @param spatialTrack
* this flag indicates if the track belongs to a spatial or to a
* bone; the difference is important because it appears that bones
* in blender have the same type of coordinate system (Y as UP)
* as jme while other features have different one (Z is UP)
* @return bone track for the specified bone
*/
public Track calculateTrack(int targetIndex, BoneContext boneContext, Vector3f localTranslation, Quaternion localRotation, Vector3f localScale, int startFrame, int stopFrame, int fps, boolean spatialTrack) {
if (calculatedTrack == null) {
// preparing data for track
int framesAmount = stopFrame - startFrame;
float timeBetweenFrames = 1.0f / fps;
float[] times = new float[framesAmount + 1];
Vector3f[] translations = new Vector3f[framesAmount + 1];
float[] translation = new float[3];
Quaternion[] rotations = new Quaternion[framesAmount + 1];
float[] quaternionRotation = new float[] { localRotation.getX(), localRotation.getY(), localRotation.getZ(), localRotation.getW() };
float[] eulerRotation = localRotation.toAngles(null);
Vector3f[] scales = new Vector3f[framesAmount + 1];
float[] scale = new float[] { localScale.x, localScale.y, localScale.z };
float degreeToRadiansFactor = 1;
if (blenderVersion < 250) {
// in blender earlier than 2.50 the values are stored in degrees
// the values in blender are divided by 10, so we need to mult it here
degreeToRadiansFactor *= FastMath.DEG_TO_RAD * 10;
}
int yIndex = 1, zIndex = 2;
boolean swapAxes = spatialTrack && fixUpAxis;
if (swapAxes) {
yIndex = 2;
zIndex = 1;
}
boolean eulerRotationUsed = false, queternionRotationUsed = false;
// calculating track data
for (int frame = startFrame; frame <= stopFrame; ++frame) {
boolean translationSet = false;
translation[0] = translation[1] = translation[2] = 0;
int index = frame - startFrame;
// start + (frame - 1) * timeBetweenFrames;
times[index] = index * timeBetweenFrames;
for (int j = 0; j < bezierCurves.length; ++j) {
double value = bezierCurves[j].evaluate(frame, BezierCurve.Y_VALUE);
switch(bezierCurves[j].getType()) {
// LOCATION
case AC_LOC_X:
translation[0] = (float) value;
translationSet = true;
break;
case AC_LOC_Y:
if (swapAxes && value != 0) {
value = -value;
}
translation[yIndex] = (float) value;
translationSet = true;
break;
case AC_LOC_Z:
translation[zIndex] = (float) value;
translationSet = true;
break;
// EULER ROTATION
case OB_ROT_X:
eulerRotationUsed = true;
eulerRotation[0] = (float) value * degreeToRadiansFactor;
break;
case OB_ROT_Y:
eulerRotationUsed = true;
if (swapAxes && value != 0) {
value = -value;
}
eulerRotation[yIndex] = (float) value * degreeToRadiansFactor;
break;
case OB_ROT_Z:
eulerRotationUsed = true;
eulerRotation[zIndex] = (float) value * degreeToRadiansFactor;
break;
// SIZE
case AC_SIZE_X:
scale[0] = (float) value;
break;
case AC_SIZE_Y:
scale[yIndex] = (float) value;
break;
case AC_SIZE_Z:
scale[zIndex] = (float) value;
break;
// QUATERNION ROTATION (used with bone animation)
case AC_QUAT_W:
queternionRotationUsed = true;
quaternionRotation[3] = (float) value;
break;
case AC_QUAT_X:
queternionRotationUsed = true;
quaternionRotation[0] = (float) value;
break;
case AC_QUAT_Y:
queternionRotationUsed = true;
if (swapAxes && value != 0) {
value = -value;
}
quaternionRotation[yIndex] = (float) value;
break;
case AC_QUAT_Z:
quaternionRotation[zIndex] = (float) value;
break;
default:
LOGGER.log(Level.WARNING, "Unknown ipo curve type: {0}.", bezierCurves[j].getType());
}
}
if (translationSet) {
translations[index] = localRotation.multLocal(new Vector3f(translation[0], translation[1], translation[2]));
} else {
translations[index] = new Vector3f();
}
if (boneContext != null) {
if (boneContext.getBone().getParent() == null && boneContext.is(BoneContext.NO_LOCAL_LOCATION)) {
float temp = translations[index].z;
translations[index].z = -translations[index].y;
translations[index].y = temp;
}
}
if (queternionRotationUsed) {
rotations[index] = new Quaternion(quaternionRotation[0], quaternionRotation[1], quaternionRotation[2], quaternionRotation[3]);
} else {
rotations[index] = new Quaternion().fromAngles(eulerRotation);
}
scales[index] = new Vector3f(scale[0], scale[1], scale[2]);
}
if (spatialTrack) {
calculatedTrack = new SpatialTrack(times, translations, rotations, scales);
} else {
calculatedTrack = new BoneTrack(targetIndex, times, translations, rotations, scales);
}
if (queternionRotationUsed && eulerRotationUsed) {
LOGGER.warning("Animation uses both euler and quaternion tracks for rotations. Quaternion rotation is applied. Make sure that this is what you wanted!");
}
}
return calculatedTrack;
}
use of com.jme3.math.Quaternion in project jmonkeyengine by jMonkeyEngine.
the class ConstraintDefinitionRotLike method bake.
@Override
public void bake(Space ownerSpace, Space targetSpace, Transform targetTransform, float influence) {
if (influence == 0 || targetTransform == null || !trackToBeChanged) {
// no need to do anything
return;
}
Transform ownerTransform = this.getOwnerTransform(ownerSpace);
Quaternion ownerRotation = ownerTransform.getRotation();
ownerAngles = ownerRotation.toAngles(ownerAngles);
targetAngles = targetTransform.getRotation().toAngles(targetAngles);
Quaternion startRotation = ownerRotation.clone();
Quaternion offset = Quaternion.IDENTITY;
if ((flag & ROTLIKE_OFFSET) != 0) {
// we add the original rotation to
// the copied rotation
offset = startRotation;
}
if ((flag & ROTLIKE_X) != 0) {
ownerAngles[0] = targetAngles[0];
if ((flag & ROTLIKE_X_INVERT) != 0) {
ownerAngles[0] = -ownerAngles[0];
}
}
if ((flag & ROTLIKE_Y) != 0) {
ownerAngles[1] = targetAngles[1];
if ((flag & ROTLIKE_Y_INVERT) != 0) {
ownerAngles[1] = -ownerAngles[1];
}
}
if ((flag & ROTLIKE_Z) != 0) {
ownerAngles[2] = targetAngles[2];
if ((flag & ROTLIKE_Z_INVERT) != 0) {
ownerAngles[2] = -ownerAngles[2];
}
}
ownerRotation.fromAngles(ownerAngles).multLocal(offset);
if (influence < 1.0f) {
// startLocation.subtractLocal(ownerLocation).normalizeLocal().mult(influence);
// ownerLocation.addLocal(startLocation);
// TODO
}
this.applyOwnerTransform(ownerTransform, ownerSpace);
}
Aggregations