Search in sources :

Example 51 with Median

use of org.apache.commons.math3.stat.descriptive.rank.Median in project SeqMonk by s-andrews.

the class GeneSetIntensityDifferenceFilter method generateProbeList.

/* (non-Javadoc)
	 * @see uk.ac.babraham.SeqMonk.Filters.ProbeFilter#generateProbeList()
	 */
protected void generateProbeList() {
    try {
        applyMultipleTestingCorrection = optionsPanel.multipleTestingBox.isSelected();
        calculateCustomRegression = optionsPanel.calculateCustomRegressionBox.isSelected();
        if (calculateCustomRegression == false) {
            customRegressionValues = null;
        }
        if (calculateLinearRegression) {
            simpleRegression = new SimpleRegression();
        }
        Probe[] allProbes = startingList.getAllProbes();
        // We're not allowing multiple comparisons - this is a bit of a messy workaround so it's compatible with other methods.
        fromStore = fromStores[0];
        toStore = toStores[0];
        ArrayList<Probe> probeArrayList = new ArrayList<Probe>();
        int NaNcount = 0;
        // remove the invalid probes - the ones without a value
        for (int i = 0; i < allProbes.length; i++) {
            if ((Float.isNaN(fromStore.getValueForProbe(allProbes[i]))) || (Float.isNaN(toStore.getValueForProbe(allProbes[i])))) {
                NaNcount++;
            } else {
                probeArrayList.add(allProbes[i]);
            }
        }
        System.err.println("Found " + NaNcount + " probes that were invalid.");
        probes = probeArrayList.toArray(new Probe[0]);
        if (calculateCustomRegression == true) {
            customRegressionValues = new float[2][probes.length];
        }
        // We'll pull the number of probes to sample from the preferences if they've changed it
        Integer updatedProbesPerSet = optionsPanel.probesPerSet();
        if (updatedProbesPerSet != null)
            probesPerSet = updatedProbesPerSet;
        // we want a set of z-scores using the local distribution.
        probeZScoreLookupTable = new Hashtable<Probe, Double>();
        // Put something in the progress whilst we're ordering the probe values to make the comparison.
        progressUpdated("Generating background model", 0, 1);
        Comparator<Integer> comp = new AverageIntensityComparator(fromStore, toStore, probes);
        // We need to generate a set of probe indices that can be ordered by their average intensity
        Integer[] indices = new Integer[probes.length];
        for (int i = 0; i < probes.length; i++) {
            indices[i] = i;
            /* add the data to the linear regression object */
            if (calculateLinearRegression) {
                simpleRegression.addData((double) fromStore.getValueForProbe(probes[i]), (double) toStore.getValueForProbe(probes[i]));
            }
        }
        if (calculateLinearRegression) {
            System.out.println("intercept = " + simpleRegression.getIntercept() + ", slope = " + simpleRegression.getSlope());
        }
        Arrays.sort(indices, comp);
        /* This holds the indices to get the deduplicated probe from the original list of probes */
        deduplicatedIndices = new Integer[probes.length];
        /* The number of probes with different values */
        int dedupProbeCounter = 0;
        // the probes deduplicated by value
        ArrayList<Probe> deduplicatedProbes = new ArrayList<Probe>();
        // populate the first one so that we have something to compare to in the loop
        deduplicatedIndices[0] = 0;
        deduplicatedProbes.add(probes[indices[0]]);
        progressUpdated("Made 0 of 1 comparisons", 0, 1);
        for (int i = 1; i < indices.length; i++) {
            /* indices have been sorted, now we need to check whether adjacent pair values are identical */
            if ((fromStore.getValueForProbe(probes[indices[i]]) == fromStore.getValueForProbe(probes[indices[i - 1]])) && (toStore.getValueForProbe(probes[indices[i]]) == toStore.getValueForProbe(probes[indices[i - 1]]))) {
                /* If they are identical, do not add the probe to the deduplicatedProbes object, but have a reference for it so we can look up which deduplicated probe and 
					 * therefore which distribution slice to use for the duplicated probe. */
                deduplicatedIndices[i] = dedupProbeCounter;
            } else {
                deduplicatedProbes.add(probes[indices[i]]);
                dedupProbeCounter++;
                deduplicatedIndices[i] = dedupProbeCounter;
            }
        }
        Probe[] dedupProbes = deduplicatedProbes.toArray(new Probe[0]);
        // make sure we're not trying to use more probes than we've got in the analysis
        if (probesPerSet > dedupProbes.length) {
            probesPerSet = dedupProbes.length;
        }
        System.out.println("total number of probe values = " + probes.length);
        System.out.println("number of deduplicated probe values = " + dedupProbes.length);
        System.out.println("probesPerSet = " + probesPerSet);
        // I want this to contain all the differences, then from that I'm going to get the z-scores.
        double[] currentDiffSet = new double[probesPerSet];
        for (int i = 0; i < indices.length; i++) {
            if (cancel) {
                cancel = false;
                progressCancelled();
                return;
            }
            if (i % 1000 == 0) {
                int progress = (i * 100) / indices.length;
                // progress += 100*comparisonIndex;
                progressUpdated("Made 0 out of 1 comparisons", progress, 100);
            }
            /**
             * There are +1s in here because we skip over j when j == startingIndex.
             */
            // We need to make up the set of differences to represent this probe
            int startingIndex = deduplicatedIndices[i] - (probesPerSet / 2);
            if (startingIndex < 0)
                startingIndex = 0;
            if (startingIndex + (probesPerSet + 1) >= dedupProbes.length)
                startingIndex = dedupProbes.length - (probesPerSet + 1);
            try {
                for (int j = startingIndex; j < startingIndex + (probesPerSet + 1); j++) {
                    if (j == startingIndex) {
                        // Don't include the point being tested in the background model
                        continue;
                    }
                    double diff;
                    if (calculateLinearRegression == true) {
                        if (j > dedupProbes.length) {
                            System.err.println(" j is too big, it's " + j + " and dedupProbes.length = " + dedupProbes.length + ", starting index = " + startingIndex);
                        }
                        double x = fromStore.getValueForProbe(dedupProbes[j]);
                        double expectedY = (simpleRegression.getSlope() * x) + simpleRegression.getIntercept();
                        diff = toStore.getValueForProbe(dedupProbes[j]) - expectedY;
                    } else {
                        diff = toStore.getValueForProbe(dedupProbes[j]) - fromStore.getValueForProbe(dedupProbes[j]);
                    }
                    if (j < startingIndex) {
                        currentDiffSet[j - startingIndex] = diff;
                    } else {
                        currentDiffSet[(j - startingIndex) - 1] = diff;
                    }
                }
                if (calculateCustomRegression == true) {
                    // the average/ kind of centre line
                    float z = ((fromStore.getValueForProbe(probes[indices[i]]) + toStore.getValueForProbe(probes[indices[i]])) / 2);
                    customRegressionValues[0][indices[i]] = z - ((float) SimpleStats.mean(currentDiffSet) / 2);
                    customRegressionValues[1][indices[i]] = z + ((float) SimpleStats.mean(currentDiffSet) / 2);
                }
                double mean = 0;
                // Get the difference for this point
                double diff;
                if (calculateLinearRegression == true) {
                    double x = fromStore.getValueForProbe(probes[indices[i]]);
                    double expectedY = (simpleRegression.getSlope() * x) + simpleRegression.getIntercept();
                    diff = toStore.getValueForProbe(probes[indices[i]]) - expectedY;
                } else if (calculateCustomRegression == true) {
                    diff = toStore.getValueForProbe(probes[indices[i]]) - fromStore.getValueForProbe(probes[indices[i]]);
                    mean = SimpleStats.mean(currentDiffSet);
                } else {
                    diff = toStore.getValueForProbe(probes[indices[i]]) - fromStore.getValueForProbe(probes[indices[i]]);
                }
                double stdev;
                stdev = SimpleStats.stdev(currentDiffSet, mean);
                // if there are no reads in the probe for either of the datasets, should we set the zscore to 0??
                double zScore = (diff - mean) / stdev;
                // modified z score
                // median absolute deviation
                /*		double[] madArray = new double[currentDiffSet.length];
						double median = SimpleStats.median(currentDiffSet);					
						
						for(int d=0; d<currentDiffSet.length; d++){							
							madArray[d] = Math.abs(currentDiffSet[d] - median);							
						}
						
						double mad = SimpleStats.median(madArray);							
						zScore = (0.6745 * (diff - median))/mad;
					}
				*/
                probeZScoreLookupTable.put(probes[indices[i]], zScore);
            } catch (SeqMonkException sme) {
                progressExceptionReceived(sme);
                return;
            }
        }
        // make this an array list as we're kicking out the mapped gene sets that have zscores with variance of 0.
        ArrayList<MappedGeneSetTTestValue> pValueArrayList = new ArrayList<MappedGeneSetTTestValue>();
        MappedGeneSet[] mappedGeneSets = null;
        /* if we're using the gene set from a file, map the gene sets to the probes */
        if (optionsPanel.geneSetsFileRadioButton.isSelected()) {
            GeneSetCollectionParser geneSetCollectionParser = new GeneSetCollectionParser(minGenesInSet, maxGenesInSet);
            GeneSetCollection geneSetCollection = geneSetCollectionParser.parseGeneSetInformation(validGeneSetFilepath);
            MappedGeneSet[] allMappedGeneSets = geneSetCollection.getMappedGeneSets(probes);
            if (allMappedGeneSets == null) {
                JOptionPane.showMessageDialog(SeqMonkApplication.getInstance(), "No sets of genes could be matched to probes.\nCheck that the gmt file is for the right species. \nTo use gene sets from a file, probe names must contain the gene name. \nTry defining new probes over genes (e.g. using the RNA-seq quantitation pipeline) or use existing probes lists instead of a gene set file.", "No gene sets identified", JOptionPane.ERROR_MESSAGE);
                throw new SeqMonkException("No sets of genes could be matched to probes.\nTo use gene sets from a file, probe names must contain the gene name.\nTry defining new probes over genes or use existing probes lists instead of a gene set file.");
            } else {
                ArrayList<MappedGeneSet> mgsArrayList = new ArrayList<MappedGeneSet>();
                /* get rid of those that have fewer probes in the set than minGenesInSet. We shouldn't exceed maxGenesInSet unless probes have been made over something other than genes */
                for (int i = 0; i < allMappedGeneSets.length; i++) {
                    if (allMappedGeneSets[i].getProbes().length >= minGenesInSet) {
                        mgsArrayList.add(allMappedGeneSets[i]);
                    }
                }
                mappedGeneSets = mgsArrayList.toArray(new MappedGeneSet[0]);
            }
        } else /* or if we're using existing probelists, create mappedGeneSets from them */
        if (optionsPanel.probeListRadioButton.isSelected() && selectedProbeLists != null) {
            mappedGeneSets = new MappedGeneSet[selectedProbeLists.length];
            for (int i = 0; i < selectedProbeLists.length; i++) {
                mappedGeneSets[i] = new MappedGeneSet(selectedProbeLists[i]);
            }
        } else {
            throw new SeqMonkException("Haven't got any genesets to use, shouldn't have got here without having any selected.");
        }
        if (mappedGeneSets == null || mappedGeneSets.length == 0) {
            throw new SeqMonkException("Couldn't map gene sets to the probes, try again with a different probe set");
        } else {
            System.err.println("there are " + mappedGeneSets.length + " mappedGeneSets");
            System.err.println("size of zScore lookup table = " + probeZScoreLookupTable.size());
        }
        System.err.println("total number of mapped gene sets = " + mappedGeneSets.length);
        // deduplicate our mappedGeneSets
        if (optionsPanel.deduplicateGeneSetBox.isSelected()) {
            mappedGeneSets = deduplicateMappedGeneSets(mappedGeneSets);
        }
        System.err.println("deduplicated mapped gene sets = " + mappedGeneSets.length);
        /* 
			 * we need to go through the mapped gene set and get all the values for the matched probes 
			 * 
			 */
        for (int i = 0; i < mappedGeneSets.length; i++) {
            Probe[] geneSetProbes = mappedGeneSets[i].getProbes();
            // to contain all the z-scores for the gene set
            double[] geneSetZscores = new double[geneSetProbes.length];
            // Find the z-scores for each of the probes in the mappedGeneSet
            for (int gsp = 0; gsp < geneSetProbes.length; gsp++) {
                if (probeZScoreLookupTable.containsKey(geneSetProbes[gsp])) {
                    geneSetZscores[gsp] = probeZScoreLookupTable.get(geneSetProbes[gsp]);
                }
            }
            // this is just temporary to check the stats - there's some duplication with this.... is there??
            mappedGeneSets[i].zScores = geneSetZscores;
            if (geneSetZscores.length > 1) {
                // the number of probes in the mappedGeneSet should always be > 1 anyway as the mappedGeneSet shouldn't be created if there are < 2 matched probes.
                double pVal;
                if (optionsPanel.statisticalTestBox.getSelectedItem().toString().equals("t-test")) {
                    pVal = TTest.calculatePValue(geneSetZscores, 0);
                } else if (optionsPanel.statisticalTestBox.getSelectedItem().toString().equals("Kolmorogov-Smirnov test")) {
                    double[] allZscores = getAllZScores(probeZScoreLookupTable);
                    KolmogorovSmirnovTest ksTest = new KolmogorovSmirnovTest();
                    pVal = ksTest.kolmogorovSmirnovTest(geneSetZscores, allZscores);
                } else if (optionsPanel.statisticalTestBox.getSelectedItem().toString().equals("Kolmorogov-Smirnov non-directional test")) {
                    double[] allZscores = getAllZScores(probeZScoreLookupTable);
                    KolmogorovSmirnovTest ksTest = new KolmogorovSmirnovTest();
                    pVal = ksTest.kolmogorovSmirnovTest(convertToAbsoluteValues(geneSetZscores), convertToAbsoluteValues(allZscores));
                } else {
                    throw new IllegalArgumentException("Didn't recognise statistical test " + optionsPanel.statisticalTestBox.getSelectedItem().toString());
                }
                mappedGeneSets[i].meanZScore = SimpleStats.mean(geneSetZscores);
                // check the variance - we don't want variances of 0.
                double stdev = SimpleStats.stdev(geneSetZscores);
                if ((stdev * stdev) < 0.00000000000001) {
                    continue;
                } else // if all the differences between the datasets are 0 then just get rid of them
                if (Double.isNaN(pVal)) {
                    continue;
                } else {
                    pValueArrayList.add(new MappedGeneSetTTestValue(mappedGeneSets[i], pVal));
                }
            } else {
                System.err.println("Fell through the net somewhere, why does the set of zscores contain fewer than 2 values?");
                continue;
            }
        }
        MappedGeneSetTTestValue[] filterResultpValues = pValueArrayList.toArray(new MappedGeneSetTTestValue[0]);
        ArrayList<MappedGeneSetTTestValue> filteredPValueArrayList = new ArrayList<MappedGeneSetTTestValue>();
        // Now we've got all the p values they need to be corrected.
        if (applyMultipleTestingCorrection) {
            BenjHochFDR.calculateQValues(filterResultpValues);
        }
        System.err.println(filterResultpValues.length + " p-values calculated, multtest = " + applyMultipleTestingCorrection + ", pval limit = " + pValueLimit);
        for (int i = 0; i < filterResultpValues.length; i++) {
            double pOrQvalue;
            if (applyMultipleTestingCorrection) {
                pOrQvalue = filterResultpValues[i].q;
            } else {
                pOrQvalue = filterResultpValues[i].p;
            }
            // check whether it passes the p/q-value and z-score cut-offs
            if (optionsPanel.reportAllResults.isSelected()) {
                filteredPValueArrayList.add(filterResultpValues[i]);
            } else {
                if ((pOrQvalue < pValueLimit) && (Math.abs(filterResultpValues[i].mappedGeneSet.meanZScore) > zScoreThreshold)) {
                    filteredPValueArrayList.add(filterResultpValues[i]);
                }
            }
        }
        // convert the ArrayList to MappedGeneSetTTestValue
        filterResultpValues = filteredPValueArrayList.toArray(new MappedGeneSetTTestValue[0]);
        if (filterResultpValues.length == 0) {
            JOptionPane.showMessageDialog(SeqMonkApplication.getInstance(), "No sets of genes were identified using the selected parameters, \ntry changing the gene sets or relaxing the p-value/z-score thresholds.", "No gene sets identified", JOptionPane.INFORMATION_MESSAGE);
        } else {
            geneSetDisplay = new GeneSetDisplay(dataCollection, listDescription(), fromStore, toStore, probes, probeZScoreLookupTable, filterResultpValues, startingList, customRegressionValues, simpleRegression, // optionsPanel.bidirectionalRadioButton.isSelected());
            false);
            geneSetDisplay.addWindowListener(this);
        }
        // We don't want to save the probe list here, we're bringing up the intermediate display from which probe lists can be saved.
        progressCancelled();
    } catch (Exception e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }
}
Also used : GeneSetCollection(uk.ac.babraham.SeqMonk.GeneSets.GeneSetCollection) ArrayList(java.util.ArrayList) Probe(uk.ac.babraham.SeqMonk.DataTypes.Probes.Probe) MappedGeneSetTTestValue(uk.ac.babraham.SeqMonk.Analysis.Statistics.MappedGeneSetTTestValue) KolmogorovSmirnovTest(org.apache.commons.math3.stat.inference.KolmogorovSmirnovTest) SeqMonkException(uk.ac.babraham.SeqMonk.SeqMonkException) GeneSetCollectionParser(uk.ac.babraham.SeqMonk.GeneSets.GeneSetCollectionParser) SeqMonkException(uk.ac.babraham.SeqMonk.SeqMonkException) SimpleRegression(org.apache.commons.math3.stat.regression.SimpleRegression) MappedGeneSet(uk.ac.babraham.SeqMonk.GeneSets.MappedGeneSet)

Example 52 with Median

use of org.apache.commons.math3.stat.descriptive.rank.Median in project SeqMonk by s-andrews.

the class MacsPeakCaller method run.

public void run() {
    // for (int i=0;i<selectedChIPStores.length;i++) {
    // System.err.println("Selcted ChIP="+selectedChIPStores[i]);
    // }
    // for (int i=0;i<selectedInputStores.length;i++) {
    // System.err.println("Selcted Input="+selectedInputStores[i]);
    // }
    // First find the tag offsets between the watson and crick strands
    // Work out the total average coverage for all of the combined ChIP samples
    long totalChIPCoverage = 0;
    for (int i = 0; i < selectedChIPStores.length; i++) {
        totalChIPCoverage += selectedChIPStores[i].getTotalReadLength();
    }
    if (cancel) {
        generationCancelled();
        return;
    }
    double averageChIPCoveragePerBase = totalChIPCoverage / (double) collection.genome().getTotalGenomeLength();
    double lowerCoverage = averageChIPCoveragePerBase * minFoldEnrichment;
    double upperCoverage = averageChIPCoveragePerBase * maxFoldEnrichment;
    System.err.println("Coverage range for high confidence peaks is " + lowerCoverage + " - " + upperCoverage);
    // Now we go through the data to find locations for our high confidence peaks so we can
    // randomly select 1000 of these to use to find the offset between the two strands
    Chromosome[] chromosomes = collection.genome().getAllChromosomes();
    Vector<Probe> potentialHighConfidencePeaks = new Vector<Probe>();
    for (int c = 0; c < chromosomes.length; c++) {
        if (cancel) {
            generationCancelled();
            return;
        }
        // Time for an update
        updateGenerationProgress("Finding high confidence peaks on chromosome " + chromosomes[c].name(), c, chromosomes.length);
        Probe lastValidProbe = null;
        for (int startPosition = 1; startPosition < chromosomes[c].length() - fragmentSize; startPosition += fragmentSize / 2) {
            // See if we need to quit
            if (cancel) {
                generationCancelled();
                return;
            }
            long totalLength = 0;
            Probe probe = new Probe(chromosomes[c], startPosition, startPosition + fragmentSize);
            for (int s = 0; s < selectedChIPStores.length; s++) {
                long[] reads = selectedChIPStores[s].getReadsForProbe(probe);
                for (int j = 0; j < reads.length; j++) {
                    totalLength += SequenceRead.length(reads[j]);
                }
            }
            if (totalLength >= (lowerCoverage * probe.length()) && totalLength <= upperCoverage * probe.length()) {
                if (lastValidProbe != null && SequenceRead.overlaps(lastValidProbe.packedPosition(), probe.packedPosition())) {
                    lastValidProbe = new Probe(chromosomes[c], lastValidProbe.start(), probe.end());
                } else if (lastValidProbe != null) {
                    // Check that the overall density over the region falls within our limits
                    totalLength = 0;
                    for (int s = 0; s < selectedChIPStores.length; s++) {
                        long[] reads = selectedChIPStores[s].getReadsForProbe(lastValidProbe);
                        for (int j = 0; j < reads.length; j++) {
                            totalLength += SequenceRead.length(reads[j]);
                        }
                    }
                    if (totalLength >= (lowerCoverage * lastValidProbe.length()) && totalLength <= upperCoverage * lastValidProbe.length()) {
                        potentialHighConfidencePeaks.add(lastValidProbe);
                    }
                    lastValidProbe = probe;
                } else {
                    lastValidProbe = probe;
                }
            }
        }
        if (lastValidProbe != null) {
            long totalLength = 0;
            for (int s = 0; s < selectedChIPStores.length; s++) {
                long[] reads = selectedChIPStores[s].getReadsForProbe(lastValidProbe);
                for (int j = 0; j < reads.length; j++) {
                    totalLength += SequenceRead.length(reads[j]);
                }
            }
            if (totalLength >= (lowerCoverage * lastValidProbe.length()) && totalLength <= upperCoverage * lastValidProbe.length()) {
                potentialHighConfidencePeaks.add(lastValidProbe);
            }
        }
    }
    if (potentialHighConfidencePeaks.size() == 0) {
        JOptionPane.showMessageDialog(SeqMonkApplication.getInstance(), "No high confidence peaks found", "Quitting generator", JOptionPane.INFORMATION_MESSAGE);
        generationCancelled();
        return;
    }
    // System.err.println("Found "+potentialHighConfidencePeaks.size()+" high confidence peaks");
    // Now we select 1000 random probes from this set
    Probe[] highConfidencePeaks = potentialHighConfidencePeaks.toArray(new Probe[0]);
    Collections.shuffle(Arrays.asList(highConfidencePeaks));
    Probe[] randomHighConfidenceProbes = new Probe[Math.min(highConfidencePeaks.length, 1000)];
    for (int i = 0; i < randomHighConfidenceProbes.length; i++) {
        randomHighConfidenceProbes[i] = highConfidencePeaks[i];
    }
    // Now find the average distance between forward / reverse reads in the candidate peaks
    int[] distances = new int[highConfidencePeaks.length];
    // Sort the candidates so we don't do stupid stuff with the cache
    Arrays.sort(randomHighConfidenceProbes);
    for (int p = 0; p < randomHighConfidenceProbes.length; p++) {
        // See if we need to quit
        if (cancel) {
            generationCancelled();
            return;
        }
        distances[p] = getInterStrandDistance(randomHighConfidenceProbes[p], selectedChIPStores);
    }
    int medianInterStrandDistance = (int) SimpleStats.median(distances);
    if (medianInterStrandDistance < 0)
        medianInterStrandDistance = 0;
    // System.err.println("Median inter strand difference = "+medianInterStrandDistance);
    // Now we find the depth cutoff for overrepresented single tags using a binomial distribution
    int totalReadCount = 0;
    for (int i = 0; i < selectedChIPStores.length; i++) {
        totalReadCount += selectedChIPStores[i].getTotalReadCount();
    }
    BinomialDistribution bin = new BinomialDistribution(totalReadCount, 1d / collection.genome().getTotalGenomeLength());
    // We want to know what depth has a chance of less than 1^-5
    int redundantThreshold = bin.inverseCumulativeProbability(1 - 0.00001d);
    if (redundantThreshold < 1)
        redundantThreshold = 1;
    // System.err.println("Redundancy threshold is "+redundantThreshold);
    // Now we construct a poisson distribution to work out the threshold to use for
    // constructing a full candidate peak set.
    updateGenerationProgress("Counting non-redundant reads", 0, 1);
    // To do this we need to get the full non-redundant length from the whole set
    int totalNonRedCount = getNonRedundantReadCount(selectedChIPStores, redundantThreshold);
    // System.err.println("Total non-redundant sequences is "+totalNonRedCount);
    // We need to know the median read length for the data
    int readLength = 0;
    for (int i = 0; i < selectedChIPStores.length; i++) {
        readLength += selectedChIPStores[i].getTotalReadLength() / selectedChIPStores[i].getTotalReadCount();
    }
    readLength /= selectedChIPStores.length;
    double expectedCountsPerWindow = getExpectedCountPerWindow(totalNonRedCount, collection.genome().getTotalGenomeLength(), fragmentSize, readLength);
    PoissonDistribution poisson = new PoissonDistribution(expectedCountsPerWindow);
    int readCountCutoff = poisson.inverseCumulativeProbability(1 - pValue);
    // System.err.println("Threshold for enrichment in a window is "+readCountCutoff+" reads using a p-value of "+pValue+" and a mean of "+(totalNonRedCount/(collection.genome().getTotalGenomeLength()/(double)fragmentSize)));
    // Now we go back through the whole dataset to do a search for all possible candidate probes
    // We re-use the peak vector we came up with before.
    potentialHighConfidencePeaks.clear();
    for (int c = 0; c < chromosomes.length; c++) {
        // Time for an update
        updateGenerationProgress("Finding candidate peaks on chromosome " + chromosomes[c].name(), c, chromosomes.length);
        Probe lastValidProbe = null;
        for (int startPosition = 1; startPosition < chromosomes[c].length() - fragmentSize; startPosition += fragmentSize / 2) {
            // See if we need to quit
            if (cancel) {
                generationCancelled();
                return;
            }
            // We expand the region we're looking at by the inter-strand distance as we're going to
            // be adjusting the read positions
            Probe probe = new Probe(chromosomes[c], startPosition, (startPosition + fragmentSize - 1));
            long[] mergedProbeReads = getReadsFromDataStoreCollection(probe, selectedChIPStores, medianInterStrandDistance);
            mergedProbeReads = deduplicateReads(mergedProbeReads, redundantThreshold);
            SequenceRead.sort(mergedProbeReads);
            int thisProbeOverlapCount = 0;
            for (int i = 0; i < mergedProbeReads.length; i++) {
                if (SequenceRead.overlaps(mergedProbeReads[i], probe.packedPosition())) {
                    ++thisProbeOverlapCount;
                }
            }
            if (thisProbeOverlapCount > readCountCutoff) {
                if (lastValidProbe != null && SequenceRead.overlaps(lastValidProbe.packedPosition(), probe.packedPosition())) {
                    lastValidProbe = new Probe(chromosomes[c], lastValidProbe.start(), probe.end());
                } else if (lastValidProbe != null) {
                    potentialHighConfidencePeaks.add(lastValidProbe);
                    lastValidProbe = probe;
                } else {
                    lastValidProbe = probe;
                }
            }
        }
        if (lastValidProbe != null) {
            potentialHighConfidencePeaks.add(lastValidProbe);
        }
    }
    // Finally we re-filter the peaks we have using local poisson distributions with densities taken
    // from either the input samples (if there are any), or the local region.  The densities are
    // estimated over 1,5 and 10kb around the peak and genome wide and the max of these is taken.
    // If there is no input then the 1kb region is not used.
    Probe[] allCandidateProbes = potentialHighConfidencePeaks.toArray(new Probe[0]);
    // Work out which stores we're using to validate against.
    DataStore[] validationStores;
    boolean useInput = false;
    double inputCorrection = 1;
    int validationNonRedCount;
    if (selectedInputStores != null && selectedInputStores.length > 0) {
        // See if we need to quit
        if (cancel) {
            generationCancelled();
            return;
        }
        validationStores = selectedInputStores;
        useInput = true;
        // We also need to work out the total number of nonredundant seqences
        // in the input so we can work out a scaling factor so that the densities
        // for input and chip are comparable.
        validationNonRedCount = getNonRedundantReadCount(validationStores, redundantThreshold);
        inputCorrection = totalNonRedCount / (double) validationNonRedCount;
        System.err.println("From chip=" + totalNonRedCount + " input=" + validationNonRedCount + " correction is " + inputCorrection);
    } else {
        validationStores = selectedChIPStores;
        validationNonRedCount = totalNonRedCount;
    }
    Vector<Probe> finalValidatedProbes = new Vector<Probe>();
    for (int p = 0; p < allCandidateProbes.length; p++) {
        // See if we need to quit
        if (cancel) {
            generationCancelled();
            return;
        }
        if (p % 100 == 0) {
            updateGenerationProgress("Validated " + p + " out of " + allCandidateProbes.length + " raw peaks", p, allCandidateProbes.length);
        }
        // System.err.println("Validating "+allCandidateProbes[p].chromosome()+":"+allCandidateProbes[p].start()+"-"+allCandidateProbes[p].end());
        // We now need to find the maximum read density per 2*bandwidth against which
        // we're going to validate this peak
        // We're going to get all reads within 10kb of the peak, and then we can subselect from there
        int midPoint = allCandidateProbes[p].middle();
        Probe region10kb = new Probe(allCandidateProbes[p].chromosome(), Math.max(midPoint - 5000, 1), Math.min(midPoint + 4999, allCandidateProbes[p].chromosome().length()), allCandidateProbes[p].strand());
        Probe region5kb = new Probe(allCandidateProbes[p].chromosome(), Math.max(midPoint - 2500, 1), Math.min(midPoint + 2499, allCandidateProbes[p].chromosome().length()), allCandidateProbes[p].strand());
        Probe region1kb = new Probe(allCandidateProbes[p].chromosome(), Math.max(midPoint - 500, 1), Math.min(midPoint + 499, allCandidateProbes[p].chromosome().length()), allCandidateProbes[p].strand());
        // Get the probes for the largest region
        long[] thisRegionReads = getReadsFromDataStoreCollection(region10kb, validationStores, 0);
        // Deduplicate so it's a fair comparison
        // Should we recalculate the redundant threshold based on the input coverage?
        thisRegionReads = deduplicateReads(thisRegionReads, redundantThreshold);
        int region10kbcount = thisRegionReads.length;
        int region5kbcount = 0;
        int region1kbcount = 0;
        // Go through the reads seeing if they fit into the 5 or 1kb regions
        for (int r = 0; r < thisRegionReads.length; r++) {
            if (SequenceRead.overlaps(region5kb.packedPosition(), thisRegionReads[r]))
                ++region5kbcount;
            if (SequenceRead.overlaps(region1kb.packedPosition(), thisRegionReads[r]))
                ++region1kbcount;
        }
        // System.err.println("Input counts 10kb="+region10kbcount+" 5kb="+region5kbcount+" 1kb="+region1kbcount);
        // Convert to densities per window and ajdust for global coverage
        double globalDensity = getExpectedCountPerWindow(validationNonRedCount, collection.genome().getTotalGenomeLength(), allCandidateProbes[p].length(), readLength) * inputCorrection;
        double density10kb = getExpectedCountPerWindow(region10kbcount, region10kb.length(), allCandidateProbes[p].length(), readLength) * inputCorrection;
        double density5kb = getExpectedCountPerWindow(region5kbcount, region5kb.length(), allCandidateProbes[p].length(), readLength) * inputCorrection;
        double density1kb = getExpectedCountPerWindow(region1kbcount, region1kb.length(), allCandidateProbes[p].length(), readLength) * inputCorrection;
        // Find the highest density to use for the validation
        double highestDensity = globalDensity;
        if (density10kb > highestDensity)
            highestDensity = density10kb;
        if (density5kb > highestDensity)
            highestDensity = density5kb;
        if (useInput && density1kb > highestDensity)
            highestDensity = density1kb;
        // System.err.println("Global="+globalDensity+" 10kb="+density10kb+" 5kb="+density5kb+" 1kb="+density1kb+" using="+highestDensity);
        // Construct a poisson distribution with this density
        PoissonDistribution localPoisson = new PoissonDistribution(highestDensity);
        // System.err.println("Cutoff from global="+(new PoissonDistribution(globalDensity)).inverseCumulativeProbability(1-pValue)+" 10kb="+(new PoissonDistribution(density10kb)).inverseCumulativeProbability(1-pValue)+" 5kb="+(new PoissonDistribution(density5kb)).inverseCumulativeProbability(1-pValue)+" 1kb="+(new PoissonDistribution(density1kb)).inverseCumulativeProbability(1-pValue));
        // Now check to see if the actual count from this peak is enough to still pass
        long[] mergedProbeReads = getReadsFromDataStoreCollection(allCandidateProbes[p], selectedChIPStores, medianInterStrandDistance);
        mergedProbeReads = deduplicateReads(mergedProbeReads, redundantThreshold);
        SequenceRead.sort(mergedProbeReads);
        int thisProbeOverlapCount = 0;
        for (int i = 0; i < mergedProbeReads.length; i++) {
            if (SequenceRead.overlaps(mergedProbeReads[i], allCandidateProbes[p].packedPosition())) {
                ++thisProbeOverlapCount;
            }
        }
        if (thisProbeOverlapCount > localPoisson.inverseCumulativeProbability(1 - pValue)) {
            finalValidatedProbes.add(allCandidateProbes[p]);
        // System.err.println("Adding probe to final set");
        }
    }
    // System.err.println("From "+allCandidateProbes.length+" candidates "+finalValidatedProbes.size()+" peaks were validated");
    ProbeSet finalSet = new ProbeSet(getDescription(), finalValidatedProbes.toArray(new Probe[0]));
    generationComplete(finalSet);
}
Also used : PoissonDistribution(org.apache.commons.math3.distribution.PoissonDistribution) Chromosome(uk.ac.babraham.SeqMonk.DataTypes.Genome.Chromosome) Probe(uk.ac.babraham.SeqMonk.DataTypes.Probes.Probe) ProbeSet(uk.ac.babraham.SeqMonk.DataTypes.Probes.ProbeSet) DataStore(uk.ac.babraham.SeqMonk.DataTypes.DataStore) BinomialDistribution(org.apache.commons.math3.distribution.BinomialDistribution) Vector(java.util.Vector) LongVector(uk.ac.babraham.SeqMonk.Utilities.LongVector)

Example 53 with Median

use of org.apache.commons.math3.stat.descriptive.rank.Median in project presto by prestodb.

the class MathFunctions method cauchyCdf.

@Description("Cauchy cdf for a given value, median, and scale (gamma)")
@ScalarFunction
@SqlType(StandardTypes.DOUBLE)
public static double cauchyCdf(@SqlType(StandardTypes.DOUBLE) double median, @SqlType(StandardTypes.DOUBLE) double scale, @SqlType(StandardTypes.DOUBLE) double value) {
    checkCondition(scale > 0, INVALID_FUNCTION_ARGUMENT, "scale must be greater than 0");
    CauchyDistribution distribution = new CauchyDistribution(null, median, scale, CauchyDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    return distribution.cumulativeProbability(value);
}
Also used : CauchyDistribution(org.apache.commons.math3.distribution.CauchyDistribution) DecimalOperators.modulusScalarFunction(com.facebook.presto.type.DecimalOperators.modulusScalarFunction) SqlScalarFunction(com.facebook.presto.metadata.SqlScalarFunction) ScalarFunction(com.facebook.presto.spi.function.ScalarFunction) Description(com.facebook.presto.spi.function.Description) SqlType(com.facebook.presto.spi.function.SqlType)

Example 54 with Median

use of org.apache.commons.math3.stat.descriptive.rank.Median in project GDSC-SMLM by aherbert.

the class TraceLengthAnalysis method run.

@Override
public void run(String arg) {
    SmlmUsageTracker.recordPlugin(this.getClass(), arg);
    if (MemoryPeakResults.isMemoryEmpty()) {
        IJ.error(TITLE, "No localisations in memory");
        return;
    }
    if (!showDialog()) {
        return;
    }
    // Load the results
    MemoryPeakResults results = ResultsManager.loadInputResults(settings.inputOption, false, null, null);
    if (MemoryPeakResults.isEmpty(results)) {
        IJ.error(TITLE, "No results could be loaded");
        return;
    }
    try {
        distanceConverter = results.getDistanceConverter(DistanceUnit.UM);
        timeConverter = results.getTimeConverter(TimeUnit.SECOND);
    } catch (final Exception ex) {
        IJ.error(TITLE, "Cannot convert units to um or seconds: " + ex.getMessage());
        return;
    }
    // Get the localisation error (4s^2) in raw units^2
    double precision = 0;
    try {
        final PrecisionResultProcedure p = new PrecisionResultProcedure(results);
        p.getPrecision();
        // Precision in nm using the median
        precision = new Percentile().evaluate(p.precisions, 50);
        // Convert from nm to um to raw units
        final double rawPrecision = distanceConverter.convertBack(precision / 1e3);
        // Get the localisation error (4s^2) in units^2
        error = 4 * rawPrecision * rawPrecision;
    } catch (final Exception ex) {
        ImageJUtils.log(TITLE + " - Unable to compute precision: " + ex.getMessage());
    }
    // Analyse the track lengths
    results = results.copy();
    results.sort(IdFramePeakResultComparator.INSTANCE);
    // Ensure the first result triggers an id change
    lastid = results.getFirst().getId() - 1;
    results.forEach(this::processTrackLength);
    // For the final track
    store();
    msds = msdList.toArray();
    lengths = lengthList.toArray();
    ids = idList.toArray();
    final int[] limits = MathUtils.limits(lengths);
    h1 = new int[limits[1] + 1];
    h2 = new int[h1.length];
    x1 = SimpleArrayUtils.newArray(h1.length, 0, 1f);
    y1 = new float[x1.length];
    y2 = new float[x1.length];
    // Sort by MSD
    final int[] indices = SimpleArrayUtils.natural(msds.length);
    SortUtils.sortIndices(indices, msds, false);
    final double[] msds2 = msds.clone();
    final int[] lengths2 = lengths.clone();
    final int[] ids2 = ids.clone();
    for (int i = 0; i < indices.length; i++) {
        msds[i] = msds2[indices[i]];
        lengths[i] = lengths2[indices[i]];
        ids[i] = ids2[indices[i]];
    }
    // Interactive analysis
    final NonBlockingExtendedGenericDialog gd = new NonBlockingExtendedGenericDialog(TITLE);
    ImageJUtils.addMessage(gd, "Split traces into fixed or moving using the track diffusion coefficient (D).\n" + "Localisation error has been subtracted from jumps (%s nm).", MathUtils.rounded(precision));
    final Statistics s = Statistics.create(msds);
    final double av = s.getMean();
    final String msg = String.format("Average D per track = %s um^2/s", MathUtils.rounded(av));
    gd.addMessage(msg);
    // Histogram the diffusion coefficients
    final WindowOrganiser wo = new WindowOrganiser();
    final HistogramPlot histogramPlot = new HistogramPlotBuilder("Trace diffusion coefficient", StoredData.create(msds), "D (um^2/s)").setRemoveOutliersOption(1).setPlotLabel(msg).build();
    histogramPlot.show(wo);
    final double[] xvalues = histogramPlot.getPlotXValues();
    final double min = xvalues[0];
    final double max = xvalues[xvalues.length - 1];
    // see if we can build a nice slider range from the histogram limits
    if (max - min < 5) {
        // Because sliders are used when the range is <5 and floating point
        gd.addSlider("D_threshold", min, max, settings.msdThreshold);
    } else {
        gd.addNumericField("D_threshold", settings.msdThreshold, 2, 6, "um^2/s");
    }
    gd.addCheckbox("Normalise", settings.normalise);
    gd.addDialogListener((gd1, event) -> {
        settings.msdThreshold = gd1.getNextNumber();
        settings.normalise = gd1.getNextBoolean();
        update();
        return true;
    });
    if (ImageJUtils.isShowGenericDialog()) {
        draw(wo);
        wo.tile();
    }
    gd.setOKLabel("Save datasets");
    gd.setCancelLabel("Close");
    gd.addHelp(HelpUrls.getUrl("trace-length-analysis"));
    gd.showDialog();
    if (gd.wasCanceled()) {
        return;
    }
    // Sort by ID
    final PeakResult[] list = results.toArray();
    Arrays.sort(list, IdFramePeakResultComparator.INSTANCE);
    createResults(results, "Fixed", 0, lastIndex, list);
    createResults(results, "Moving", lastIndex, msds.length, list);
}
Also used : Percentile(org.apache.commons.math3.stat.descriptive.rank.Percentile) NonBlockingExtendedGenericDialog(uk.ac.sussex.gdsc.core.ij.gui.NonBlockingExtendedGenericDialog) HistogramPlotBuilder(uk.ac.sussex.gdsc.core.ij.HistogramPlot.HistogramPlotBuilder) WindowOrganiser(uk.ac.sussex.gdsc.core.ij.plugin.WindowOrganiser) PrecisionResultProcedure(uk.ac.sussex.gdsc.smlm.results.procedures.PrecisionResultProcedure) Statistics(uk.ac.sussex.gdsc.core.utils.Statistics) PeakResult(uk.ac.sussex.gdsc.smlm.results.PeakResult) HistogramPlot(uk.ac.sussex.gdsc.core.ij.HistogramPlot) MemoryPeakResults(uk.ac.sussex.gdsc.smlm.results.MemoryPeakResults)

Example 55 with Median

use of org.apache.commons.math3.stat.descriptive.rank.Median in project GDSC-SMLM by aherbert.

the class BenchmarkSpotFit method summariseResults.

private void summariseResults(BenchmarkSpotFitResult spotFitResults, long runTime, final PreprocessedPeakResult[] preprocessedPeakResults, int uniqueIdCount, CandidateData candidateData, TIntObjectHashMap<List<Coordinate>> actualCoordinates) {
    // Summarise the fitting results. N fits, N failures.
    // Optimal match statistics if filtering is perfect (since fitting is not perfect).
    final StoredDataStatistics distanceStats = new StoredDataStatistics();
    final StoredDataStatistics depthStats = new StoredDataStatistics();
    // Get stats for all fitted results and those that match
    // Signal, SNR, Width, xShift, yShift, Precision
    createFilterCriteria();
    final StoredDataStatistics[][] stats = new StoredDataStatistics[3][filterCriteria.length];
    for (int i = 0; i < stats.length; i++) {
        for (int j = 0; j < stats[i].length; j++) {
            stats[i][j] = new StoredDataStatistics();
        }
    }
    final double nmPerPixel = simulationParameters.pixelPitch;
    double tp = 0;
    double fp = 0;
    int failCtp = 0;
    int failCfp = 0;
    int ctp = 0;
    int cfp = 0;
    final int[] singleStatus = new int[FitStatus.values().length];
    final int[] multiStatus = new int[singleStatus.length];
    final int[] doubletStatus = new int[singleStatus.length];
    final int[] multiDoubletStatus = new int[singleStatus.length];
    // Easier to materialise the values since we have a lot of non final variables to manipulate
    final TIntObjectHashMap<FilterCandidates> fitResults = spotFitResults.fitResults;
    final int[] frames = new int[fitResults.size()];
    final FilterCandidates[] candidates = new FilterCandidates[fitResults.size()];
    final int[] counter = new int[1];
    fitResults.forEachEntry((frame, candidate) -> {
        frames[counter[0]] = frame;
        candidates[counter[0]] = candidate;
        counter[0]++;
        return true;
    });
    for (final FilterCandidates result : candidates) {
        // Count the number of fit results that matched (tp) and did not match (fp)
        tp += result.tp;
        fp += result.fp;
        for (int i = 0; i < result.fitResult.length; i++) {
            if (result.spots[i].match) {
                ctp++;
            } else {
                cfp++;
            }
            final MultiPathFitResult fitResult = result.fitResult[i];
            if (singleStatus != null && result.spots[i].match) {
                // Debugging reasons for fit failure
                addStatus(singleStatus, fitResult.getSingleFitResult());
                addStatus(multiStatus, fitResult.getMultiFitResult());
                addStatus(doubletStatus, fitResult.getDoubletFitResult());
                addStatus(multiDoubletStatus, fitResult.getMultiDoubletFitResult());
            }
            if (noMatch(fitResult)) {
                if (result.spots[i].match) {
                    failCtp++;
                } else {
                    failCfp++;
                }
            }
            // We have multi-path results.
            // We want statistics for:
            // [0] all fitted spots
            // [1] fitted spots that match a result
            // [2] fitted spots that do not match a result
            addToStats(fitResult.getSingleFitResult(), stats);
            addToStats(fitResult.getMultiFitResult(), stats);
            addToStats(fitResult.getDoubletFitResult(), stats);
            addToStats(fitResult.getMultiDoubletFitResult(), stats);
        }
        // Statistics on spots that fit an actual result
        for (int i = 0; i < result.match.length; i++) {
            if (!result.match[i].isFitResult()) {
                // For now just ignore the candidates that matched
                continue;
            }
            final FitMatch fitMatch = (FitMatch) result.match[i];
            distanceStats.add(fitMatch.distance * nmPerPixel);
            depthStats.add(fitMatch.zdepth * nmPerPixel);
        }
    }
    if (tp == 0) {
        IJ.error(TITLE, "No fit results matched the simulation actual results");
        return;
    }
    // Store data for computing correlation
    final double[] i1 = new double[depthStats.getN()];
    final double[] i2 = new double[i1.length];
    final double[] is = new double[i1.length];
    int ci = 0;
    for (final FilterCandidates result : candidates) {
        for (int i = 0; i < result.match.length; i++) {
            if (!result.match[i].isFitResult()) {
                // For now just ignore the candidates that matched
                continue;
            }
            final FitMatch fitMatch = (FitMatch) result.match[i];
            final ScoredSpot spot = result.spots[fitMatch.index];
            i1[ci] = fitMatch.predictedSignal;
            i2[ci] = fitMatch.actualSignal;
            is[ci] = spot.spot.intensity;
            ci++;
        }
    }
    // We want to compute the Jaccard against the spot metric
    // Filter the results using the multi-path filter
    final ArrayList<MultiPathFitResults> multiPathResults = new ArrayList<>(fitResults.size());
    for (int i = 0; i < frames.length; i++) {
        final int frame = frames[i];
        final MultiPathFitResult[] multiPathFitResults = candidates[i].fitResult;
        final int totalCandidates = candidates[i].spots.length;
        final List<Coordinate> list = actualCoordinates.get(frame);
        final int nActual = (list == null) ? 0 : list.size();
        multiPathResults.add(new MultiPathFitResults(frame, multiPathFitResults, totalCandidates, nActual));
    }
    // Score the results and count the number returned
    final List<FractionalAssignment[]> assignments = new ArrayList<>();
    final TIntHashSet set = new TIntHashSet(uniqueIdCount);
    final FractionScoreStore scoreStore = set::add;
    final MultiPathFitResults[] multiResults = multiPathResults.toArray(new MultiPathFitResults[0]);
    // Filter with no filter
    final MultiPathFilter mpf = new MultiPathFilter(new SignalFilter(0), null, multiFilter.residualsThreshold);
    mpf.fractionScoreSubset(multiResults, NullFailCounter.INSTANCE, this.results.size(), assignments, scoreStore, CoordinateStoreFactory.create(0, 0, imp.getWidth(), imp.getHeight(), config.convertUsingHwhMax(config.getDuplicateDistanceParameter())));
    final double[][] matchScores = new double[set.size()][];
    int count = 0;
    for (int i = 0; i < assignments.size(); i++) {
        final FractionalAssignment[] a = assignments.get(i);
        if (a == null) {
            continue;
        }
        for (int j = 0; j < a.length; j++) {
            final PreprocessedPeakResult r = ((PeakFractionalAssignment) a[j]).peakResult;
            set.remove(r.getUniqueId());
            final double precision = Math.sqrt(r.getLocationVariance());
            final double signal = r.getSignal();
            final double snr = r.getSnr();
            final double width = r.getXSdFactor();
            final double xShift = r.getXRelativeShift2();
            final double yShift = r.getYRelativeShift2();
            // Since these two are combined for filtering and the max is what matters.
            final double shift = (xShift > yShift) ? Math.sqrt(xShift) : Math.sqrt(yShift);
            final double eshift = Math.sqrt(xShift + yShift);
            final double[] score = new double[8];
            score[FILTER_SIGNAL] = signal;
            score[FILTER_SNR] = snr;
            score[FILTER_MIN_WIDTH] = width;
            score[FILTER_MAX_WIDTH] = width;
            score[FILTER_SHIFT] = shift;
            score[FILTER_ESHIFT] = eshift;
            score[FILTER_PRECISION] = precision;
            score[FILTER_PRECISION + 1] = a[j].getScore();
            matchScores[count++] = score;
        }
    }
    // Add the rest
    set.forEach(new CustomTIntProcedure(count) {

        @Override
        public boolean execute(int uniqueId) {
            // This should not be null or something has gone wrong
            final PreprocessedPeakResult r = preprocessedPeakResults[uniqueId];
            if (r == null) {
                throw new IllegalArgumentException("Missing result: " + uniqueId);
            }
            final double precision = Math.sqrt(r.getLocationVariance());
            final double signal = r.getSignal();
            final double snr = r.getSnr();
            final double width = r.getXSdFactor();
            final double xShift = r.getXRelativeShift2();
            final double yShift = r.getYRelativeShift2();
            // Since these two are combined for filtering and the max is what matters.
            final double shift = (xShift > yShift) ? Math.sqrt(xShift) : Math.sqrt(yShift);
            final double eshift = Math.sqrt(xShift + yShift);
            final double[] score = new double[8];
            score[FILTER_SIGNAL] = signal;
            score[FILTER_SNR] = snr;
            score[FILTER_MIN_WIDTH] = width;
            score[FILTER_MAX_WIDTH] = width;
            score[FILTER_SHIFT] = shift;
            score[FILTER_ESHIFT] = eshift;
            score[FILTER_PRECISION] = precision;
            matchScores[count++] = score;
            return true;
        }
    });
    final FitConfiguration fitConfig = config.getFitConfiguration();
    // Debug the reasons the fit failed
    if (singleStatus != null) {
        String name = PeakFit.getSolverName(fitConfig);
        if (fitConfig.getFitSolver() == FitSolver.MLE && fitConfig.isModelCamera()) {
            name += " Camera";
        }
        IJ.log("Failure counts: " + name);
        printFailures("Single", singleStatus);
        printFailures("Multi", multiStatus);
        printFailures("Doublet", doubletStatus);
        printFailures("Multi doublet", multiDoubletStatus);
    }
    final StringBuilder sb = new StringBuilder(300);
    // Add information about the simulation
    final double signal = simulationParameters.averageSignal;
    final int n = results.size();
    sb.append(imp.getStackSize()).append('\t');
    final int w = imp.getWidth();
    final int h = imp.getHeight();
    sb.append(w).append('\t');
    sb.append(h).append('\t');
    sb.append(n).append('\t');
    final double density = ((double) n / imp.getStackSize()) / (w * h) / (simulationParameters.pixelPitch * simulationParameters.pixelPitch / 1e6);
    sb.append(MathUtils.rounded(density)).append('\t');
    sb.append(MathUtils.rounded(signal)).append('\t');
    sb.append(MathUtils.rounded(simulationParameters.sd)).append('\t');
    sb.append(MathUtils.rounded(simulationParameters.pixelPitch)).append('\t');
    sb.append(MathUtils.rounded(simulationParameters.depth)).append('\t');
    sb.append(simulationParameters.fixedDepth).append('\t');
    sb.append(MathUtils.rounded(simulationParameters.gain)).append('\t');
    sb.append(MathUtils.rounded(simulationParameters.readNoise)).append('\t');
    sb.append(MathUtils.rounded(simulationParameters.background)).append('\t');
    sb.append(MathUtils.rounded(simulationParameters.noise)).append('\t');
    if (simulationParameters.fullSimulation) {
    // The total signal is spread over frames
    }
    sb.append(MathUtils.rounded(signal / simulationParameters.noise)).append('\t');
    sb.append(MathUtils.rounded(simulationParameters.sd / simulationParameters.pixelPitch)).append('\t');
    sb.append(spotFilter.getDescription());
    // nP and nN is the fractional score of the spot candidates
    addCount(sb, (double) candidateData.countPositive + candidateData.countNegative);
    addCount(sb, candidateData.countPositive);
    addCount(sb, candidateData.countNegative);
    addCount(sb, candidateData.fractionPositive);
    addCount(sb, candidateData.fractionNegative);
    String name = PeakFit.getSolverName(fitConfig);
    if (fitConfig.getFitSolver() == FitSolver.MLE && fitConfig.isModelCamera()) {
        name += " Camera";
    }
    add(sb, name);
    add(sb, config.getFitting());
    spotFitResults.resultPrefix = sb.toString();
    // Q. Should I add other fit configuration here?
    // The fraction of positive and negative candidates that were included
    add(sb, (100.0 * ctp) / candidateData.countPositive);
    add(sb, (100.0 * cfp) / candidateData.countNegative);
    // Score the fitting results compared to the original simulation.
    // Score the candidate selection:
    add(sb, ctp + cfp);
    add(sb, ctp);
    add(sb, cfp);
    // TP are all candidates that can be matched to a spot
    // FP are all candidates that cannot be matched to a spot
    // FN = The number of missed spots
    FractionClassificationResult match = new FractionClassificationResult(ctp, cfp, 0, simulationParameters.molecules - ctp);
    add(sb, match.getRecall());
    add(sb, match.getPrecision());
    add(sb, match.getF1Score());
    add(sb, match.getJaccard());
    // Score the fitting results:
    add(sb, failCtp);
    add(sb, failCfp);
    // TP are all fit results that can be matched to a spot
    // FP are all fit results that cannot be matched to a spot
    // FN = The number of missed spots
    add(sb, tp);
    add(sb, fp);
    match = new FractionClassificationResult(tp, fp, 0, simulationParameters.molecules - tp);
    add(sb, match.getRecall());
    add(sb, match.getPrecision());
    add(sb, match.getF1Score());
    add(sb, match.getJaccard());
    // Do it again but pretend we can perfectly filter all the false positives
    // add(sb, tp);
    match = new FractionClassificationResult(tp, 0, 0, simulationParameters.molecules - tp);
    // Recall is unchanged
    // Precision will be 100%
    add(sb, match.getF1Score());
    add(sb, match.getJaccard());
    // The mean may be subject to extreme outliers so use the median
    double median = distanceStats.getMedian();
    add(sb, median);
    final WindowOrganiser wo = new WindowOrganiser();
    String label = String.format("Recall = %s. n = %d. Median = %s nm. SD = %s nm", MathUtils.rounded(match.getRecall()), distanceStats.getN(), MathUtils.rounded(median), MathUtils.rounded(distanceStats.getStandardDeviation()));
    new HistogramPlotBuilder(TITLE, distanceStats, "Match Distance (nm)").setPlotLabel(label).show(wo);
    median = depthStats.getMedian();
    add(sb, median);
    // Sort by spot intensity and produce correlation
    double[] correlation = null;
    double[] rankCorrelation = null;
    double[] rank = null;
    final FastCorrelator fastCorrelator = new FastCorrelator();
    final ArrayList<Ranking> pc1 = new ArrayList<>();
    final ArrayList<Ranking> pc2 = new ArrayList<>();
    ci = 0;
    if (settings.showCorrelation) {
        final int[] indices = SimpleArrayUtils.natural(i1.length);
        SortUtils.sortData(indices, is, settings.rankByIntensity, true);
        correlation = new double[i1.length];
        rankCorrelation = new double[i1.length];
        rank = new double[i1.length];
        for (final int ci2 : indices) {
            fastCorrelator.add(Math.round(i1[ci2]), Math.round(i2[ci2]));
            pc1.add(new Ranking(i1[ci2], ci));
            pc2.add(new Ranking(i2[ci2], ci));
            correlation[ci] = fastCorrelator.getCorrelation();
            rankCorrelation[ci] = Correlator.correlation(rank(pc1), rank(pc2));
            if (settings.rankByIntensity) {
                rank[ci] = is[0] - is[ci];
            } else {
                rank[ci] = ci;
            }
            ci++;
        }
    } else {
        for (int i = 0; i < i1.length; i++) {
            fastCorrelator.add(Math.round(i1[i]), Math.round(i2[i]));
            pc1.add(new Ranking(i1[i], i));
            pc2.add(new Ranking(i2[i], i));
        }
    }
    final double pearsonCorr = fastCorrelator.getCorrelation();
    final double rankedCorr = Correlator.correlation(rank(pc1), rank(pc2));
    // Get the regression
    final SimpleRegression regression = new SimpleRegression(false);
    for (int i = 0; i < pc1.size(); i++) {
        regression.addData(pc1.get(i).value, pc2.get(i).value);
    }
    // final double intercept = regression.getIntercept();
    final double slope = regression.getSlope();
    if (settings.showCorrelation) {
        String title = TITLE + " Intensity";
        Plot plot = new Plot(title, "Candidate", "Spot");
        final double[] limits1 = MathUtils.limits(i1);
        final double[] limits2 = MathUtils.limits(i2);
        plot.setLimits(limits1[0], limits1[1], limits2[0], limits2[1]);
        label = String.format("Correlation=%s; Ranked=%s; Slope=%s", MathUtils.rounded(pearsonCorr), MathUtils.rounded(rankedCorr), MathUtils.rounded(slope));
        plot.addLabel(0, 0, label);
        plot.setColor(Color.red);
        plot.addPoints(i1, i2, Plot.DOT);
        if (slope > 1) {
            plot.drawLine(limits1[0], limits1[0] * slope, limits1[1], limits1[1] * slope);
        } else {
            plot.drawLine(limits2[0] / slope, limits2[0], limits2[1] / slope, limits2[1]);
        }
        ImageJUtils.display(title, plot, wo);
        title = TITLE + " Correlation";
        plot = new Plot(title, "Spot Rank", "Correlation");
        final double[] xlimits = MathUtils.limits(rank);
        double[] ylimits = MathUtils.limits(correlation);
        ylimits = MathUtils.limits(ylimits, rankCorrelation);
        plot.setLimits(xlimits[0], xlimits[1], ylimits[0], ylimits[1]);
        plot.setColor(Color.red);
        plot.addPoints(rank, correlation, Plot.LINE);
        plot.setColor(Color.blue);
        plot.addPoints(rank, rankCorrelation, Plot.LINE);
        plot.setColor(Color.black);
        plot.addLabel(0, 0, label);
        ImageJUtils.display(title, plot, wo);
    }
    add(sb, pearsonCorr);
    add(sb, rankedCorr);
    add(sb, slope);
    label = String.format("n = %d. Median = %s nm", depthStats.getN(), MathUtils.rounded(median));
    new HistogramPlotBuilder(TITLE, depthStats, "Match Depth (nm)").setRemoveOutliersOption(1).setPlotLabel(label).show(wo);
    // Plot histograms of the stats on the same window
    final double[] lower = new double[filterCriteria.length];
    final double[] upper = new double[lower.length];
    final double[] min = new double[lower.length];
    final double[] max = new double[lower.length];
    for (int i = 0; i < stats[0].length; i++) {
        final double[] limits = showDoubleHistogram(stats, i, wo, matchScores);
        lower[i] = limits[0];
        upper[i] = limits[1];
        min[i] = limits[2];
        max[i] = limits[3];
    }
    // Reconfigure some of the range limits
    // Make this a bit bigger
    upper[FILTER_SIGNAL] *= 2;
    // Make this a bit bigger
    upper[FILTER_SNR] *= 2;
    final double factor = 0.25;
    if (lower[FILTER_MIN_WIDTH] != 0) {
        // (assuming lower is less than 1)
        upper[FILTER_MIN_WIDTH] = 1 - Math.max(0, factor * (1 - lower[FILTER_MIN_WIDTH]));
    }
    if (upper[FILTER_MIN_WIDTH] != 0) {
        // (assuming upper is more than 1)
        lower[FILTER_MAX_WIDTH] = 1 + Math.max(0, factor * (upper[FILTER_MAX_WIDTH] - 1));
    }
    // Round the ranges
    final double[] interval = new double[stats[0].length];
    interval[FILTER_SIGNAL] = SignalFilter.DEFAULT_INCREMENT;
    interval[FILTER_SNR] = SnrFilter.DEFAULT_INCREMENT;
    interval[FILTER_MIN_WIDTH] = WidthFilter2.DEFAULT_MIN_INCREMENT;
    interval[FILTER_MAX_WIDTH] = WidthFilter.DEFAULT_INCREMENT;
    interval[FILTER_SHIFT] = ShiftFilter.DEFAULT_INCREMENT;
    interval[FILTER_ESHIFT] = EShiftFilter.DEFAULT_INCREMENT;
    interval[FILTER_PRECISION] = PrecisionFilter.DEFAULT_INCREMENT;
    interval[FILTER_ITERATIONS] = 0.1;
    interval[FILTER_EVALUATIONS] = 0.1;
    // Create a range increment
    final double[] increment = new double[lower.length];
    for (int i = 0; i < increment.length; i++) {
        lower[i] = MathUtils.floor(lower[i], interval[i]);
        upper[i] = MathUtils.ceil(upper[i], interval[i]);
        final double range = upper[i] - lower[i];
        // Allow clipping if the range is small compared to the min increment
        double multiples = range / interval[i];
        // Use 8 multiples for the equivalent of +/- 4 steps around the centre
        if (multiples < 8) {
            multiples = Math.ceil(multiples);
        } else {
            multiples = 8;
        }
        increment[i] = MathUtils.ceil(range / multiples, interval[i]);
        if (i == FILTER_MIN_WIDTH) {
            // Requires clipping based on the upper limit
            lower[i] = upper[i] - increment[i] * multiples;
        } else {
            upper[i] = lower[i] + increment[i] * multiples;
        }
    }
    for (int i = 0; i < stats[0].length; i++) {
        lower[i] = MathUtils.round(lower[i]);
        upper[i] = MathUtils.round(upper[i]);
        min[i] = MathUtils.round(min[i]);
        max[i] = MathUtils.round(max[i]);
        increment[i] = MathUtils.round(increment[i]);
        sb.append('\t').append(min[i]).append(':').append(lower[i]).append('-').append(upper[i]).append(':').append(max[i]);
    }
    // Disable some filters
    increment[FILTER_SIGNAL] = Double.POSITIVE_INFINITY;
    // increment[FILTER_SHIFT] = Double.POSITIVE_INFINITY;
    increment[FILTER_ESHIFT] = Double.POSITIVE_INFINITY;
    wo.tile();
    sb.append('\t').append(TextUtils.nanosToString(runTime));
    createTable().append(sb.toString());
    if (settings.saveFilterRange) {
        GUIFilterSettings filterSettings = SettingsManager.readGuiFilterSettings(0);
        String filename = (silent) ? filterSettings.getFilterSetFilename() : ImageJUtils.getFilename("Filter_range_file", filterSettings.getFilterSetFilename());
        if (filename == null) {
            return;
        }
        // Remove extension to store the filename
        filename = FileUtils.replaceExtension(filename, ".xml");
        filterSettings = filterSettings.toBuilder().setFilterSetFilename(filename).build();
        // Create a filter set using the ranges
        final ArrayList<Filter> filters = new ArrayList<>(4);
        // Create the multi-filter using the same precision type as that used during fitting.
        // Currently no support for z-filter as 3D astigmatism fitting is experimental.
        final PrecisionMethod precisionMethod = getPrecisionMethod((DirectFilter) multiFilter.getFilter());
        Function<double[], Filter> generator;
        if (precisionMethod == PrecisionMethod.POISSON_CRLB) {
            generator = parameters -> new MultiFilterCrlb(parameters[FILTER_SIGNAL], (float) parameters[FILTER_SNR], parameters[FILTER_MIN_WIDTH], parameters[FILTER_MAX_WIDTH], parameters[FILTER_SHIFT], parameters[FILTER_ESHIFT], parameters[FILTER_PRECISION], 0f, 0f);
        } else if (precisionMethod == PrecisionMethod.MORTENSEN) {
            generator = parameters -> new MultiFilter(parameters[FILTER_SIGNAL], (float) parameters[FILTER_SNR], parameters[FILTER_MIN_WIDTH], parameters[FILTER_MAX_WIDTH], parameters[FILTER_SHIFT], parameters[FILTER_ESHIFT], parameters[FILTER_PRECISION], 0f, 0f);
        } else {
            // Default
            generator = parameters -> new MultiFilter2(parameters[FILTER_SIGNAL], (float) parameters[FILTER_SNR], parameters[FILTER_MIN_WIDTH], parameters[FILTER_MAX_WIDTH], parameters[FILTER_SHIFT], parameters[FILTER_ESHIFT], parameters[FILTER_PRECISION], 0f, 0f);
        }
        filters.add(generator.apply(lower));
        filters.add(generator.apply(upper));
        filters.add(generator.apply(increment));
        if (saveFilters(filename, filters)) {
            SettingsManager.writeSettings(filterSettings);
        }
        // Create a filter set using the min/max and the initial bounds.
        // Set sensible limits
        min[FILTER_SIGNAL] = Math.max(min[FILTER_SIGNAL], 30);
        max[FILTER_SNR] = Math.min(max[FILTER_SNR], 10000);
        max[FILTER_PRECISION] = Math.min(max[FILTER_PRECISION], 100);
        // Make the 4-set filters the same as the 3-set filters.
        filters.clear();
        filters.add(generator.apply(min));
        filters.add(generator.apply(lower));
        filters.add(generator.apply(upper));
        filters.add(generator.apply(max));
        saveFilters(FileUtils.replaceExtension(filename, ".4.xml"), filters);
    }
    spotFitResults.min = min;
    spotFitResults.max = max;
}
Also used : Color(java.awt.Color) PeakResultPoint(uk.ac.sussex.gdsc.smlm.results.PeakResultPoint) Arrays(java.util.Arrays) CoordinateStoreFactory(uk.ac.sussex.gdsc.smlm.results.filter.CoordinateStoreFactory) HistogramPlotBuilder(uk.ac.sussex.gdsc.core.ij.HistogramPlot.HistogramPlotBuilder) BasePreprocessedPeakResult(uk.ac.sussex.gdsc.smlm.results.filter.BasePreprocessedPeakResult) MultiPathFitResults(uk.ac.sussex.gdsc.smlm.results.filter.MultiPathFitResults) Filter(uk.ac.sussex.gdsc.smlm.results.filter.Filter) HelpUrls(uk.ac.sussex.gdsc.smlm.ij.plugins.HelpUrls) Pair(org.apache.commons.lang3.tuple.Pair) MemoryPeakResults(uk.ac.sussex.gdsc.smlm.results.MemoryPeakResults) FilterValidationFlag(uk.ac.sussex.gdsc.smlm.results.filter.FilterValidationFlag) FitProtosHelper(uk.ac.sussex.gdsc.smlm.data.config.FitProtosHelper) ImageJImageConverter(uk.ac.sussex.gdsc.smlm.ij.utils.ImageJImageConverter) PrecisionFilter(uk.ac.sussex.gdsc.smlm.results.filter.PrecisionFilter) WidthFilter2(uk.ac.sussex.gdsc.smlm.results.filter.WidthFilter2) LinearInterpolator(org.apache.commons.math3.analysis.interpolation.LinearInterpolator) BlockingQueue(java.util.concurrent.BlockingQueue) StopWatch(org.apache.commons.lang3.time.StopWatch) ConcurrencyUtils(uk.ac.sussex.gdsc.core.utils.concurrent.ConcurrencyUtils) MultiPathFitResult(uk.ac.sussex.gdsc.smlm.results.filter.MultiPathFitResult) TextUtils(uk.ac.sussex.gdsc.core.utils.TextUtils) Plot(ij.gui.Plot) PeakFit(uk.ac.sussex.gdsc.smlm.ij.plugins.PeakFit) TIntHashSet(gnu.trove.set.hash.TIntHashSet) ImagePlus(ij.ImagePlus) ArrayBlockingQueue(java.util.concurrent.ArrayBlockingQueue) TextArea(java.awt.TextArea) PeakFractionalAssignment(uk.ac.sussex.gdsc.smlm.results.filter.PeakFractionalAssignment) XmlUtils(uk.ac.sussex.gdsc.core.utils.XmlUtils) ShiftFilter(uk.ac.sussex.gdsc.smlm.results.filter.ShiftFilter) FileUtils(uk.ac.sussex.gdsc.core.utils.FileUtils) PlugIn(ij.plugin.PlugIn) MultiPathFilter(uk.ac.sussex.gdsc.smlm.results.filter.MultiPathFilter) PolynomialSplineFunction(org.apache.commons.math3.analysis.polynomials.PolynomialSplineFunction) Prefs(ij.Prefs) TIntProcedure(gnu.trove.procedure.TIntProcedure) ArrayList(java.util.ArrayList) SortUtils(uk.ac.sussex.gdsc.core.utils.SortUtils) SignalFilter(uk.ac.sussex.gdsc.smlm.results.filter.SignalFilter) FitConfiguration(uk.ac.sussex.gdsc.smlm.engine.FitConfiguration) BenchmarkSpotFilterResult(uk.ac.sussex.gdsc.smlm.ij.plugins.benchmark.BenchmarkSpotFilter.BenchmarkSpotFilterResult) FitEngineConfigurationProvider(uk.ac.sussex.gdsc.smlm.ij.plugins.PeakFit.FitEngineConfigurationProvider) Assignment(uk.ac.sussex.gdsc.core.match.Assignment) FitWorker(uk.ac.sussex.gdsc.smlm.engine.FitWorker) MultiFilterCrlb(uk.ac.sussex.gdsc.smlm.results.filter.MultiFilterCrlb) FileOutputStream(java.io.FileOutputStream) FilterResult(uk.ac.sussex.gdsc.smlm.ij.plugins.benchmark.BenchmarkSpotFilter.FilterResult) FractionClassificationResult(uk.ac.sussex.gdsc.core.match.FractionClassificationResult) DirectFilter(uk.ac.sussex.gdsc.smlm.results.filter.DirectFilter) ResultsMatchCalculator(uk.ac.sussex.gdsc.smlm.ij.plugins.ResultsMatchCalculator) PreprocessedPeakResult(uk.ac.sussex.gdsc.smlm.results.filter.PreprocessedPeakResult) Percentile(org.apache.commons.math3.stat.descriptive.rank.Percentile) EShiftFilter(uk.ac.sussex.gdsc.smlm.results.filter.EShiftFilter) DescriptiveStatistics(org.apache.commons.math3.stat.descriptive.DescriptiveStatistics) ImageStack(ij.ImageStack) MaximaSpotFilter(uk.ac.sussex.gdsc.smlm.filters.MaximaSpotFilter) FitTask(uk.ac.sussex.gdsc.smlm.engine.FitParameters.FitTask) NullFailCounter(uk.ac.sussex.gdsc.smlm.results.count.NullFailCounter) FractionScoreStore(uk.ac.sussex.gdsc.smlm.results.filter.MultiPathFilter.FractionScoreStore) TIntObjectHashMap(gnu.trove.map.hash.TIntObjectHashMap) TextWindow(ij.text.TextWindow) Spot(uk.ac.sussex.gdsc.smlm.filters.Spot) ItemListener(java.awt.event.ItemListener) FitSolver(uk.ac.sussex.gdsc.smlm.data.config.FitProtos.FitSolver) ParameterType(uk.ac.sussex.gdsc.smlm.results.filter.ParameterType) StoredDataStatistics(uk.ac.sussex.gdsc.core.utils.StoredDataStatistics) OutOfRangeException(org.apache.commons.math3.exception.OutOfRangeException) AtomicInteger(java.util.concurrent.atomic.AtomicInteger) AssignmentComparator(uk.ac.sussex.gdsc.core.match.AssignmentComparator) PeakResults(uk.ac.sussex.gdsc.smlm.results.PeakResults) ResultAssignment(uk.ac.sussex.gdsc.smlm.results.filter.ResultAssignment) PsfCalculator(uk.ac.sussex.gdsc.smlm.ij.plugins.PsfCalculator) PlotWindow(ij.gui.PlotWindow) MathUtils(uk.ac.sussex.gdsc.core.utils.MathUtils) FitParameters(uk.ac.sussex.gdsc.smlm.engine.FitParameters) SettingsManager(uk.ac.sussex.gdsc.smlm.ij.settings.SettingsManager) ItemEvent(java.awt.event.ItemEvent) BasePoint(uk.ac.sussex.gdsc.core.match.BasePoint) ExtendedGenericDialog(uk.ac.sussex.gdsc.core.ij.gui.ExtendedGenericDialog) FitEngineConfiguration(uk.ac.sussex.gdsc.smlm.engine.FitEngineConfiguration) Coordinate(uk.ac.sussex.gdsc.core.match.Coordinate) FractionalAssignment(uk.ac.sussex.gdsc.core.match.FractionalAssignment) FilterXStreamUtils(uk.ac.sussex.gdsc.smlm.results.filter.FilterXStreamUtils) FitStatus(uk.ac.sussex.gdsc.smlm.fitting.FitStatus) List(java.util.List) PointPair(uk.ac.sussex.gdsc.core.match.PointPair) SimpleArrayUtils(uk.ac.sussex.gdsc.core.utils.SimpleArrayUtils) ParameterisedFitJob(uk.ac.sussex.gdsc.smlm.engine.ParameterisedFitJob) Rectangle(java.awt.Rectangle) FastCorrelator(uk.ac.sussex.gdsc.core.utils.FastCorrelator) PrecisionMethod(uk.ac.sussex.gdsc.smlm.data.config.FitProtos.PrecisionMethod) ImmutableFractionalAssignment(uk.ac.sussex.gdsc.core.match.ImmutableFractionalAssignment) MultiFilter(uk.ac.sussex.gdsc.smlm.results.filter.MultiFilter) WindowOrganiser(uk.ac.sussex.gdsc.core.ij.plugin.WindowOrganiser) ScoredSpot(uk.ac.sussex.gdsc.smlm.ij.plugins.benchmark.BenchmarkSpotFilter.ScoredSpot) AtomicReference(java.util.concurrent.atomic.AtomicReference) Function(java.util.function.Function) TextField(java.awt.TextField) IJImageSource(uk.ac.sussex.gdsc.smlm.ij.IJImageSource) Correlator(uk.ac.sussex.gdsc.core.utils.Correlator) NoiseEstimatorMethod(uk.ac.sussex.gdsc.smlm.data.config.FitProtos.NoiseEstimatorMethod) LinkedList(java.util.LinkedList) ConcurrentRuntimeException(org.apache.commons.lang3.concurrent.ConcurrentRuntimeException) WidthFilter(uk.ac.sussex.gdsc.smlm.results.filter.WidthFilter) GUIFilterSettings(uk.ac.sussex.gdsc.smlm.ij.settings.GUIProtos.GUIFilterSettings) RampedScore(uk.ac.sussex.gdsc.core.utils.RampedScore) FitResult(uk.ac.sussex.gdsc.smlm.fitting.FitResult) Checkbox(java.awt.Checkbox) FilterSet(uk.ac.sussex.gdsc.smlm.results.filter.FilterSet) Ticker(uk.ac.sussex.gdsc.core.logging.Ticker) SnrFilter(uk.ac.sussex.gdsc.smlm.results.filter.SnrFilter) MultiFilter2(uk.ac.sussex.gdsc.smlm.results.filter.MultiFilter2) SimpleRegression(org.apache.commons.math3.stat.regression.SimpleRegression) HistogramPlot(uk.ac.sussex.gdsc.core.ij.HistogramPlot) ImageJUtils(uk.ac.sussex.gdsc.core.ij.ImageJUtils) SynchronizedPeakResults(uk.ac.sussex.gdsc.smlm.results.SynchronizedPeakResults) IJ(ij.IJ) SmlmUsageTracker(uk.ac.sussex.gdsc.smlm.ij.plugins.SmlmUsageTracker) Collections(java.util.Collections) ArrayList(java.util.ArrayList) HistogramPlotBuilder(uk.ac.sussex.gdsc.core.ij.HistogramPlot.HistogramPlotBuilder) PrecisionMethod(uk.ac.sussex.gdsc.smlm.data.config.FitProtos.PrecisionMethod) MultiPathFitResult(uk.ac.sussex.gdsc.smlm.results.filter.MultiPathFitResult) MultiFilterCrlb(uk.ac.sussex.gdsc.smlm.results.filter.MultiFilterCrlb) PeakFractionalAssignment(uk.ac.sussex.gdsc.smlm.results.filter.PeakFractionalAssignment) FractionalAssignment(uk.ac.sussex.gdsc.core.match.FractionalAssignment) ImmutableFractionalAssignment(uk.ac.sussex.gdsc.core.match.ImmutableFractionalAssignment) FractionClassificationResult(uk.ac.sussex.gdsc.core.match.FractionClassificationResult) BasePreprocessedPeakResult(uk.ac.sussex.gdsc.smlm.results.filter.BasePreprocessedPeakResult) PreprocessedPeakResult(uk.ac.sussex.gdsc.smlm.results.filter.PreprocessedPeakResult) ScoredSpot(uk.ac.sussex.gdsc.smlm.ij.plugins.benchmark.BenchmarkSpotFilter.ScoredSpot) FastCorrelator(uk.ac.sussex.gdsc.core.utils.FastCorrelator) Plot(ij.gui.Plot) HistogramPlot(uk.ac.sussex.gdsc.core.ij.HistogramPlot) StoredDataStatistics(uk.ac.sussex.gdsc.core.utils.StoredDataStatistics) Coordinate(uk.ac.sussex.gdsc.core.match.Coordinate) FitConfiguration(uk.ac.sussex.gdsc.smlm.engine.FitConfiguration) MultiPathFilter(uk.ac.sussex.gdsc.smlm.results.filter.MultiPathFilter) TIntHashSet(gnu.trove.set.hash.TIntHashSet) GUIFilterSettings(uk.ac.sussex.gdsc.smlm.ij.settings.GUIProtos.GUIFilterSettings) SignalFilter(uk.ac.sussex.gdsc.smlm.results.filter.SignalFilter) WindowOrganiser(uk.ac.sussex.gdsc.core.ij.plugin.WindowOrganiser) MultiFilter(uk.ac.sussex.gdsc.smlm.results.filter.MultiFilter) PeakResultPoint(uk.ac.sussex.gdsc.smlm.results.PeakResultPoint) BasePoint(uk.ac.sussex.gdsc.core.match.BasePoint) PeakFractionalAssignment(uk.ac.sussex.gdsc.smlm.results.filter.PeakFractionalAssignment) FractionScoreStore(uk.ac.sussex.gdsc.smlm.results.filter.MultiPathFilter.FractionScoreStore) SimpleRegression(org.apache.commons.math3.stat.regression.SimpleRegression) Filter(uk.ac.sussex.gdsc.smlm.results.filter.Filter) PrecisionFilter(uk.ac.sussex.gdsc.smlm.results.filter.PrecisionFilter) ShiftFilter(uk.ac.sussex.gdsc.smlm.results.filter.ShiftFilter) MultiPathFilter(uk.ac.sussex.gdsc.smlm.results.filter.MultiPathFilter) SignalFilter(uk.ac.sussex.gdsc.smlm.results.filter.SignalFilter) DirectFilter(uk.ac.sussex.gdsc.smlm.results.filter.DirectFilter) EShiftFilter(uk.ac.sussex.gdsc.smlm.results.filter.EShiftFilter) MaximaSpotFilter(uk.ac.sussex.gdsc.smlm.filters.MaximaSpotFilter) MultiFilter(uk.ac.sussex.gdsc.smlm.results.filter.MultiFilter) WidthFilter(uk.ac.sussex.gdsc.smlm.results.filter.WidthFilter) SnrFilter(uk.ac.sussex.gdsc.smlm.results.filter.SnrFilter) MultiFilter2(uk.ac.sussex.gdsc.smlm.results.filter.MultiFilter2) MultiPathFitResults(uk.ac.sussex.gdsc.smlm.results.filter.MultiPathFitResults)

Aggregations

Median (org.apache.commons.math3.stat.descriptive.rank.Median)35 RealMatrix (org.apache.commons.math3.linear.RealMatrix)29 IntStream (java.util.stream.IntStream)28 Collectors (java.util.stream.Collectors)24 Logger (org.apache.logging.log4j.Logger)24 Percentile (org.apache.commons.math3.stat.descriptive.rank.Percentile)22 DoubleStream (java.util.stream.DoubleStream)20 File (java.io.File)18 Array2DRowRealMatrix (org.apache.commons.math3.linear.Array2DRowRealMatrix)17 ParamUtils (org.broadinstitute.hellbender.utils.param.ParamUtils)16 List (java.util.List)15 ArrayList (java.util.ArrayList)14 JavaSparkContext (org.apache.spark.api.java.JavaSparkContext)14 UserException (org.broadinstitute.hellbender.exceptions.UserException)14 ReadCountCollection (org.broadinstitute.hellbender.tools.exome.ReadCountCollection)14 SimpleInterval (org.broadinstitute.hellbender.utils.SimpleInterval)14 VisibleForTesting (com.google.common.annotations.VisibleForTesting)13 java.util (java.util)13 DefaultRealMatrixChangingVisitor (org.apache.commons.math3.linear.DefaultRealMatrixChangingVisitor)12 LogManager (org.apache.logging.log4j.LogManager)12