Search in sources :

Example 26 with Median

use of org.apache.commons.math3.stat.descriptive.rank.Median in project GDSC-SMLM by aherbert.

the class BenchmarkSpotFit method showDoubleHistogram.

private double[] showDoubleHistogram(StoredDataStatistics[][] stats, final int index, WindowOrganiser wo, double[][] matchScores) {
    final String xLabel = filterCriteria[index].name;
    LowerLimit lower = filterCriteria[index].lower;
    UpperLimit upper = filterCriteria[index].upper;
    double[] jaccard = null;
    double[] metric = null;
    double maxJaccard = 0;
    if (index <= FILTER_PRECISION && (settings.showFilterScoreHistograms || upper.requiresJaccard || lower.requiresJaccard)) {
        // Jaccard score verses the range of the metric
        for (final double[] d : matchScores) {
            if (!Double.isFinite(d[index])) {
                System.out.printf("Error in fit data [%d]: %s%n", index, d[index]);
            }
        }
        // Do not use Double.compare(double, double) so we get exceptions in the sort for inf/nan
        Arrays.sort(matchScores, (o1, o2) -> {
            if (o1[index] < o2[index]) {
                return -1;
            }
            if (o1[index] > o2[index]) {
                return 1;
            }
            return 0;
        });
        final int scoreIndex = FILTER_PRECISION + 1;
        final int n = results.size();
        double tp = 0;
        double fp = 0;
        jaccard = new double[matchScores.length + 1];
        metric = new double[jaccard.length];
        for (int k = 0; k < matchScores.length; k++) {
            final double score = matchScores[k][scoreIndex];
            tp += score;
            fp += (1 - score);
            jaccard[k + 1] = tp / (fp + n);
            metric[k + 1] = matchScores[k][index];
        }
        metric[0] = metric[1];
        maxJaccard = MathUtils.max(jaccard);
        if (settings.showFilterScoreHistograms) {
            final String title = TITLE + " Jaccard " + xLabel;
            final Plot plot = new Plot(title, xLabel, "Jaccard");
            plot.addPoints(metric, jaccard, Plot.LINE);
            // Remove outliers
            final double[] limitsx = MathUtils.limits(metric);
            final Percentile p = new Percentile();
            final double l = p.evaluate(metric, 25);
            final double u = p.evaluate(metric, 75);
            final double iqr = 1.5 * (u - l);
            limitsx[1] = Math.min(limitsx[1], u + iqr);
            plot.setLimits(limitsx[0], limitsx[1], 0, MathUtils.max(jaccard));
            ImageJUtils.display(title, plot, wo);
        }
    }
    // [0] is all
    // [1] is matches
    // [2] is no match
    final StoredDataStatistics s1 = stats[0][index];
    final StoredDataStatistics s2 = stats[1][index];
    final StoredDataStatistics s3 = stats[2][index];
    if (s1.getN() == 0) {
        return new double[4];
    }
    final DescriptiveStatistics d = s1.getStatistics();
    double median = 0;
    Plot plot = null;
    String title = null;
    if (settings.showFilterScoreHistograms) {
        median = d.getPercentile(50);
        final String label = String.format("n = %d. Median = %s nm", s1.getN(), MathUtils.rounded(median));
        final HistogramPlot histogramPlot = new HistogramPlotBuilder(TITLE, s1, xLabel).setMinBinWidth(filterCriteria[index].minBinWidth).setRemoveOutliersOption((filterCriteria[index].restrictRange) ? 1 : 0).setPlotLabel(label).build();
        final PlotWindow plotWindow = histogramPlot.show(wo);
        if (plotWindow == null) {
            IJ.log("Failed to show the histogram: " + xLabel);
            return new double[4];
        }
        title = plotWindow.getTitle();
        // Reverse engineer the histogram settings
        plot = histogramPlot.getPlot();
        final double[] xvalues = histogramPlot.getPlotXValues();
        final int bins = xvalues.length;
        final double yMin = xvalues[0];
        final double binSize = xvalues[1] - xvalues[0];
        final double yMax = xvalues[0] + (bins - 1) * binSize;
        if (s2.getN() > 0) {
            final double[] values = s2.getValues();
            final double[][] hist = HistogramPlot.calcHistogram(values, yMin, yMax, bins);
            if (hist[0].length > 0) {
                plot.setColor(Color.red);
                plot.addPoints(hist[0], hist[1], Plot.BAR);
                ImageJUtils.display(title, plot);
            }
        }
        if (s3.getN() > 0) {
            final double[] values = s3.getValues();
            final double[][] hist = HistogramPlot.calcHistogram(values, yMin, yMax, bins);
            if (hist[0].length > 0) {
                plot.setColor(Color.blue);
                plot.addPoints(hist[0], hist[1], Plot.BAR);
                ImageJUtils.display(title, plot);
            }
        }
    }
    // Do cumulative histogram
    final double[][] h1 = MathUtils.cumulativeHistogram(s1.getValues(), true);
    final double[][] h2 = MathUtils.cumulativeHistogram(s2.getValues(), true);
    final double[][] h3 = MathUtils.cumulativeHistogram(s3.getValues(), true);
    if (settings.showFilterScoreHistograms) {
        title = TITLE + " Cumul " + xLabel;
        plot = new Plot(title, xLabel, "Frequency");
        // Find limits
        double[] xlimit = MathUtils.limits(h1[0]);
        xlimit = MathUtils.limits(xlimit, h2[0]);
        xlimit = MathUtils.limits(xlimit, h3[0]);
        // Restrict using the inter-quartile range
        if (filterCriteria[index].restrictRange) {
            final double q1 = d.getPercentile(25);
            final double q2 = d.getPercentile(75);
            final double iqr = (q2 - q1) * 2.5;
            xlimit[0] = MathUtils.max(xlimit[0], median - iqr);
            xlimit[1] = MathUtils.min(xlimit[1], median + iqr);
        }
        plot.setLimits(xlimit[0], xlimit[1], 0, 1.05);
        plot.addPoints(h1[0], h1[1], Plot.LINE);
        plot.setColor(Color.red);
        plot.addPoints(h2[0], h2[1], Plot.LINE);
        plot.setColor(Color.blue);
        plot.addPoints(h3[0], h3[1], Plot.LINE);
    }
    // Determine the maximum difference between the TP and FP
    double maxx1 = 0;
    double maxx2 = 0;
    double max1 = 0;
    double max2 = 0;
    // We cannot compute the delta histogram, or use percentiles
    if (s2.getN() == 0) {
        upper = UpperLimit.ZERO;
        lower = LowerLimit.ZERO;
    }
    final boolean requireLabel = (settings.showFilterScoreHistograms && filterCriteria[index].requireLabel);
    if (requireLabel || upper.requiresDeltaHistogram() || lower.requiresDeltaHistogram()) {
        if (s2.getN() != 0 && s3.getN() != 0) {
            final LinearInterpolator li = new LinearInterpolator();
            final PolynomialSplineFunction f1 = li.interpolate(h2[0], h2[1]);
            final PolynomialSplineFunction f2 = li.interpolate(h3[0], h3[1]);
            for (final double x : h1[0]) {
                if (x < h2[0][0] || x < h3[0][0]) {
                    continue;
                }
                try {
                    final double v1 = f1.value(x);
                    final double v2 = f2.value(x);
                    final double diff = v2 - v1;
                    if (diff > 0) {
                        if (max1 < diff) {
                            max1 = diff;
                            maxx1 = x;
                        }
                    } else if (max2 > diff) {
                        max2 = diff;
                        maxx2 = x;
                    }
                } catch (final OutOfRangeException ex) {
                    // Because we reached the end
                    break;
                }
            }
        }
    }
    if (plot != null) {
        // We use bins=1 on charts where we do not need a label
        if (requireLabel) {
            final String label = String.format("Max+ %s @ %s, Max- %s @ %s", MathUtils.rounded(max1), MathUtils.rounded(maxx1), MathUtils.rounded(max2), MathUtils.rounded(maxx2));
            plot.setColor(Color.black);
            plot.addLabel(0, 0, label);
        }
        ImageJUtils.display(title, plot, wo);
    }
    // Now compute the bounds using the desired limit
    double lowerBound;
    double upperBound;
    switch(lower) {
        case MAX_NEGATIVE_CUMUL_DELTA:
            // Switch to percentiles if we have no delta histogram
            if (maxx2 < 0) {
                lowerBound = maxx2;
                break;
            }
        // fall-through
        case ONE_PERCENT:
            lowerBound = getPercentile(h2, 0.01);
            break;
        case MIN:
            lowerBound = getPercentile(h2, 0.0);
            break;
        case ZERO:
            lowerBound = 0;
            break;
        case HALF_MAX_JACCARD_VALUE:
            lowerBound = getXValue(metric, jaccard, maxJaccard * 0.5);
            break;
        default:
            throw new IllegalStateException("Missing lower limit method");
    }
    switch(upper) {
        case MAX_POSITIVE_CUMUL_DELTA:
            // Switch to percentiles if we have no delta histogram
            if (maxx1 > 0) {
                upperBound = maxx1;
                break;
            }
        // fall-through
        case NINETY_NINE_PERCENT:
            upperBound = getPercentile(h2, 0.99);
            break;
        case NINETY_NINE_NINE_PERCENT:
            upperBound = getPercentile(h2, 0.999);
            break;
        case ZERO:
            upperBound = 0;
            break;
        case MAX_JACCARD2:
            upperBound = getXValue(metric, jaccard, maxJaccard) * 2;
            // System.out.printf("MaxJ = %.4f @ %.3f\n", maxJ, u / 2);
            break;
        default:
            throw new IllegalStateException("Missing upper limit method");
    }
    final double min = getPercentile(h1, 0);
    final double max = getPercentile(h1, 1);
    return new double[] { lowerBound, upperBound, min, max };
}
Also used : DescriptiveStatistics(org.apache.commons.math3.stat.descriptive.DescriptiveStatistics) Percentile(org.apache.commons.math3.stat.descriptive.rank.Percentile) Plot(ij.gui.Plot) HistogramPlot(uk.ac.sussex.gdsc.core.ij.HistogramPlot) StoredDataStatistics(uk.ac.sussex.gdsc.core.utils.StoredDataStatistics) HistogramPlotBuilder(uk.ac.sussex.gdsc.core.ij.HistogramPlot.HistogramPlotBuilder) PlotWindow(ij.gui.PlotWindow) PolynomialSplineFunction(org.apache.commons.math3.analysis.polynomials.PolynomialSplineFunction) PeakResultPoint(uk.ac.sussex.gdsc.smlm.results.PeakResultPoint) BasePoint(uk.ac.sussex.gdsc.core.match.BasePoint) HistogramPlot(uk.ac.sussex.gdsc.core.ij.HistogramPlot) LinearInterpolator(org.apache.commons.math3.analysis.interpolation.LinearInterpolator) OutOfRangeException(org.apache.commons.math3.exception.OutOfRangeException)

Example 27 with Median

use of org.apache.commons.math3.stat.descriptive.rank.Median in project GDSC-SMLM by aherbert.

the class FIRE method runQEstimation.

private void runQEstimation() {
    IJ.showStatus(TITLE + " ...");
    if (!showQEstimationInputDialog())
        return;
    MemoryPeakResults results = ResultsManager.loadInputResults(inputOption, false);
    if (results == null || results.size() == 0) {
        IJ.error(TITLE, "No results could be loaded");
        return;
    }
    if (results.getCalibration() == null) {
        IJ.error(TITLE, "The results are not calibrated");
        return;
    }
    results = cropToRoi(results);
    if (results.size() < 2) {
        IJ.error(TITLE, "No results within the crop region");
        return;
    }
    initialise(results, null);
    // We need localisation precision.
    // Build a histogram of the localisation precision.
    // Get the initial mean and SD and plot as a Gaussian.
    PrecisionHistogram histogram = calculatePrecisionHistogram();
    if (histogram == null) {
        IJ.error(TITLE, "No localisation precision available.\n \nPlease choose " + PrecisionMethod.FIXED + " and enter a precision mean and SD.");
        return;
    }
    StoredDataStatistics precision = histogram.precision;
    //String name = results.getName();
    double fourierImageScale = SCALE_VALUES[imageScaleIndex];
    int imageSize = IMAGE_SIZE_VALUES[imageSizeIndex];
    // Create the image and compute the numerator of FRC. 
    // Do not use the signal so results.size() is the number of localisations.
    IJ.showStatus("Computing FRC curve ...");
    FireImages images = createImages(fourierImageScale, imageSize, false);
    // DEBUGGING - Save the two images to disk. Load the images into the Matlab 
    // code that calculates the Q-estimation and make this plugin match the functionality.
    //IJ.save(new ImagePlus("i1", images.ip1), "/scratch/i1.tif");
    //IJ.save(new ImagePlus("i2", images.ip2), "/scratch/i2.tif");
    FRC frc = new FRC();
    frc.progress = progress;
    frc.setFourierMethod(fourierMethod);
    frc.setSamplingMethod(samplingMethod);
    frc.setPerimeterSamplingFactor(perimeterSamplingFactor);
    FRCCurve frcCurve = frc.calculateFrcCurve(images.ip1, images.ip2, images.nmPerPixel);
    if (frcCurve == null) {
        IJ.error(TITLE, "Failed to compute FRC curve");
        return;
    }
    IJ.showStatus("Running Q-estimation ...");
    // Note:
    // The method implemented here is based on Matlab code provided by Bernd Rieger.
    // The idea is to compute the spurious correlation component of the FRC Numerator
    // using an initial estimate of distribution of the localisation precision (assumed 
    // to be Gaussian). This component is the contribution of repeat localisations of 
    // the same molecule to the numerator and is modelled as an exponential decay
    // (exp_decay). The component is scaled by the Q-value which
    // is the average number of times a molecule is seen in addition to the first time.
    // At large spatial frequencies the scaled component should match the numerator,
    // i.e. at high resolution (low FIRE number) the numerator is made up of repeat 
    // localisations of the same molecule and not actual structure in the image.
    // The best fit is where the numerator equals the scaled component, i.e. num / (q*exp_decay) == 1.
    // The FRC Numerator is plotted and Q can be determined by
    // adjusting Q and the precision mean and SD to maximise the cost function.
    // This can be done interactively by the user with the effect on the FRC curve
    // dynamically updated and displayed.
    // Compute the scaled FRC numerator
    double qNorm = (1 / frcCurve.mean1 + 1 / frcCurve.mean2);
    double[] frcnum = new double[frcCurve.getSize()];
    for (int i = 0; i < frcnum.length; i++) {
        FRCCurveResult r = frcCurve.get(i);
        frcnum[i] = qNorm * r.getNumerator() / r.getNumberOfSamples();
    }
    // Compute the spatial frequency and the region for curve fitting
    double[] q = FRC.computeQ(frcCurve, false);
    int low = 0, high = q.length;
    while (high > 0 && q[high - 1] > maxQ) high--;
    while (low < q.length && q[low] < minQ) low++;
    // Require we fit at least 10% of the curve
    if (high - low < q.length * 0.1) {
        IJ.error(TITLE, "Not enough points for Q estimation");
        return;
    }
    // Obtain initial estimate of Q plateau height and decay.
    // This can be done by fitting the precision histogram and then fixing the mean and sigma.
    // Or it can be done by allowing the precision to be sampled and the mean and sigma
    // become parameters for fitting.
    // Check if we can sample precision values
    boolean sampleDecay = precision != null && FIRE.sampleDecay;
    double[] exp_decay;
    if (sampleDecay) {
        // Random sample of precision values from the distribution is used to 
        // construct the decay curve
        int[] sample = Random.sample(10000, precision.getN(), new Well19937c());
        final double four_pi2 = 4 * Math.PI * Math.PI;
        double[] pre = new double[q.length];
        for (int i = 1; i < q.length; i++) pre[i] = -four_pi2 * q[i] * q[i];
        // Sample
        final int n = sample.length;
        double[] hq = new double[n];
        for (int j = 0; j < n; j++) {
            // Scale to SR pixels
            double s2 = precision.getValue(sample[j]) / images.nmPerPixel;
            s2 *= s2;
            for (int i = 1; i < q.length; i++) hq[i] += FastMath.exp(pre[i] * s2);
        }
        for (int i = 1; i < q.length; i++) hq[i] /= n;
        exp_decay = new double[q.length];
        exp_decay[0] = 1;
        for (int i = 1; i < q.length; i++) {
            double sinc_q = sinc(Math.PI * q[i]);
            exp_decay[i] = sinc_q * sinc_q * hq[i];
        }
    } else {
        // Note: The sigma mean and std should be in the units of super-resolution 
        // pixels so scale to SR pixels
        exp_decay = computeExpDecay(histogram.mean / images.nmPerPixel, histogram.sigma / images.nmPerPixel, q);
    }
    // Smoothing
    double[] smooth;
    if (loessSmoothing) {
        // Note: This computes the log then smooths it 
        double bandwidth = 0.1;
        int robustness = 0;
        double[] l = new double[exp_decay.length];
        for (int i = 0; i < l.length; i++) {
            // Original Matlab code computes the log for each array.
            // This is equivalent to a single log on the fraction of the two.
            // Perhaps the two log method is more numerically stable.
            //l[i] = Math.log(Math.abs(frcnum[i])) - Math.log(exp_decay[i]);
            l[i] = Math.log(Math.abs(frcnum[i] / exp_decay[i]));
        }
        try {
            LoessInterpolator loess = new LoessInterpolator(bandwidth, robustness);
            smooth = loess.smooth(q, l);
        } catch (Exception e) {
            IJ.error(TITLE, "LOESS smoothing failed");
            return;
        }
    } else {
        // Note: This smooths the curve before computing the log 
        double[] norm = new double[exp_decay.length];
        for (int i = 0; i < norm.length; i++) {
            norm[i] = frcnum[i] / exp_decay[i];
        }
        // Median window of 5 == radius of 2
        MedianWindow mw = new MedianWindow(norm, 2);
        smooth = new double[exp_decay.length];
        for (int i = 0; i < norm.length; i++) {
            smooth[i] = Math.log(Math.abs(mw.getMedian()));
            mw.increment();
        }
    }
    // Fit with quadratic to find the initial guess.
    // Note: example Matlab code frc_Qcorrection7.m identifies regions of the 
    // smoothed log curve with low derivative and only fits those. The fit is 
    // used for the final estimate. Fitting a subset with low derivative is not 
    // implemented here since the initial estimate is subsequently optimised 
    // to maximise a cost function. 
    Quadratic curve = new Quadratic();
    SimpleCurveFitter fit = SimpleCurveFitter.create(curve, new double[2]);
    WeightedObservedPoints points = new WeightedObservedPoints();
    for (int i = low; i < high; i++) points.add(q[i], smooth[i]);
    double[] estimate = fit.fit(points.toList());
    double qValue = FastMath.exp(estimate[0]);
    //System.out.printf("Initial q-estimate = %s => %.3f\n", Arrays.toString(estimate), qValue);
    // This could be made an option. Just use for debugging
    boolean debug = false;
    if (debug) {
        // Plot the initial fit and the fit curve
        double[] qScaled = FRC.computeQ(frcCurve, true);
        double[] line = new double[q.length];
        for (int i = 0; i < q.length; i++) line[i] = curve.value(q[i], estimate);
        String title = TITLE + " Initial fit";
        Plot2 plot = new Plot2(title, "Spatial Frequency (nm^-1)", "FRC Numerator");
        String label = String.format("Q = %.3f", qValue);
        plot.addPoints(qScaled, smooth, Plot.LINE);
        plot.setColor(Color.red);
        plot.addPoints(qScaled, line, Plot.LINE);
        plot.setColor(Color.black);
        plot.addLabel(0, 0, label);
        Utils.display(title, plot, Utils.NO_TO_FRONT);
    }
    if (fitPrecision) {
        // Q - Should this be optional?
        if (sampleDecay) {
            // If a sample of the precision was used to construct the data for the initial fit 
            // then update the estimate using the fit result since it will be a better start point. 
            histogram.sigma = precision.getStandardDeviation();
            // Normalise sum-of-squares to the SR pixel size
            double meanSumOfSquares = (precision.getSumOfSquares() / (images.nmPerPixel * images.nmPerPixel)) / precision.getN();
            histogram.mean = images.nmPerPixel * Math.sqrt(meanSumOfSquares - estimate[1] / (4 * Math.PI * Math.PI));
        }
        // Do a multivariate fit ...
        SimplexOptimizer opt = new SimplexOptimizer(1e-6, 1e-10);
        PointValuePair p = null;
        MultiPlateauness f = new MultiPlateauness(frcnum, q, low, high);
        double[] initial = new double[] { histogram.mean / images.nmPerPixel, histogram.sigma / images.nmPerPixel, qValue };
        p = findMin(p, opt, f, scale(initial, 0.1));
        p = findMin(p, opt, f, scale(initial, 0.5));
        p = findMin(p, opt, f, initial);
        p = findMin(p, opt, f, scale(initial, 2));
        p = findMin(p, opt, f, scale(initial, 10));
        if (p != null) {
            double[] point = p.getPointRef();
            histogram.mean = point[0] * images.nmPerPixel;
            histogram.sigma = point[1] * images.nmPerPixel;
            qValue = point[2];
        }
    } else {
        // If so then this should be optional.
        if (sampleDecay) {
            if (precisionMethod != PrecisionMethod.FIXED) {
                histogram.sigma = precision.getStandardDeviation();
                // Normalise sum-of-squares to the SR pixel size
                double meanSumOfSquares = (precision.getSumOfSquares() / (images.nmPerPixel * images.nmPerPixel)) / precision.getN();
                histogram.mean = images.nmPerPixel * Math.sqrt(meanSumOfSquares - estimate[1] / (4 * Math.PI * Math.PI));
            }
            exp_decay = computeExpDecay(histogram.mean / images.nmPerPixel, histogram.sigma / images.nmPerPixel, q);
        }
        // Estimate spurious component by promoting plateauness.
        // The Matlab code used random initial points for a Simplex optimiser.
        // A Brent line search should be pretty deterministic so do simple repeats.
        // However it will proceed downhill so if the initial point is wrong then 
        // it will find a sub-optimal result.
        UnivariateOptimizer o = new BrentOptimizer(1e-3, 1e-6);
        Plateauness f = new Plateauness(frcnum, exp_decay, low, high);
        UnivariatePointValuePair p = null;
        p = findMin(p, o, f, qValue, 0.1);
        p = findMin(p, o, f, qValue, 0.2);
        p = findMin(p, o, f, qValue, 0.333);
        p = findMin(p, o, f, qValue, 0.5);
        // Do some Simplex repeats as well
        SimplexOptimizer opt = new SimplexOptimizer(1e-6, 1e-10);
        p = findMin(p, opt, f, qValue * 0.1);
        p = findMin(p, opt, f, qValue * 0.5);
        p = findMin(p, opt, f, qValue);
        p = findMin(p, opt, f, qValue * 2);
        p = findMin(p, opt, f, qValue * 10);
        if (p != null)
            qValue = p.getPoint();
    }
    QPlot qplot = new QPlot(frcCurve, qValue, low, high);
    // Interactive dialog to estimate Q (blinking events per flourophore) using 
    // sliders for the mean and standard deviation of the localisation precision.
    showQEstimationDialog(histogram, qplot, frcCurve, images.nmPerPixel);
    IJ.showStatus(TITLE + " complete");
}
Also used : BrentOptimizer(org.apache.commons.math3.optim.univariate.BrentOptimizer) Plot2(ij.gui.Plot2) Well19937c(org.apache.commons.math3.random.Well19937c) PointValuePair(org.apache.commons.math3.optim.PointValuePair) UnivariatePointValuePair(org.apache.commons.math3.optim.univariate.UnivariatePointValuePair) LoessInterpolator(org.apache.commons.math3.analysis.interpolation.LoessInterpolator) WeightedObservedPoints(org.apache.commons.math3.fitting.WeightedObservedPoints) SimplexOptimizer(org.apache.commons.math3.optim.nonlinear.scalar.noderiv.SimplexOptimizer) MemoryPeakResults(gdsc.smlm.results.MemoryPeakResults) MedianWindow(gdsc.core.utils.MedianWindow) SimpleCurveFitter(org.apache.commons.math3.fitting.SimpleCurveFitter) FRCCurveResult(gdsc.smlm.ij.frc.FRC.FRCCurveResult) StoredDataStatistics(gdsc.core.utils.StoredDataStatistics) UnivariatePointValuePair(org.apache.commons.math3.optim.univariate.UnivariatePointValuePair) WeightedObservedPoint(org.apache.commons.math3.fitting.WeightedObservedPoint) TooManyEvaluationsException(org.apache.commons.math3.exception.TooManyEvaluationsException) FRCCurve(gdsc.smlm.ij.frc.FRC.FRCCurve) FRC(gdsc.smlm.ij.frc.FRC) UnivariateOptimizer(org.apache.commons.math3.optim.univariate.UnivariateOptimizer)

Example 28 with Median

use of org.apache.commons.math3.stat.descriptive.rank.Median in project GDSC-SMLM by aherbert.

the class BenchmarkSpotFit method summariseResults.

private void summariseResults(TIntObjectHashMap<FilterCandidates> filterCandidates, long runTime, final PreprocessedPeakResult[] preprocessedPeakResults, int nUniqueIDs) {
    createTable();
    // Summarise the fitting results. N fits, N failures. 
    // Optimal match statistics if filtering is perfect (since fitting is not perfect).
    StoredDataStatistics distanceStats = new StoredDataStatistics();
    StoredDataStatistics depthStats = new StoredDataStatistics();
    // Get stats for all fitted results and those that match 
    // Signal, SNR, Width, xShift, yShift, Precision
    createFilterCriteria();
    StoredDataStatistics[][] stats = new StoredDataStatistics[3][filterCriteria.length];
    for (int i = 0; i < stats.length; i++) for (int j = 0; j < stats[i].length; j++) stats[i][j] = new StoredDataStatistics();
    final double nmPerPixel = simulationParameters.a;
    double tp = 0, fp = 0;
    int failcTP = 0, failcFP = 0;
    int cTP = 0, cFP = 0;
    int[] singleStatus = null, multiStatus = null, doubletStatus = null, multiDoubletStatus = null;
    singleStatus = new int[FitStatus.values().length];
    multiStatus = new int[singleStatus.length];
    doubletStatus = new int[singleStatus.length];
    multiDoubletStatus = new int[singleStatus.length];
    // Easier to materialise the values since we have a lot of non final variables to manipulate
    final int[] frames = new int[filterCandidates.size()];
    final FilterCandidates[] candidates = new FilterCandidates[filterCandidates.size()];
    final int[] counter = new int[1];
    filterCandidates.forEachEntry(new TIntObjectProcedure<FilterCandidates>() {

        public boolean execute(int a, FilterCandidates b) {
            frames[counter[0]] = a;
            candidates[counter[0]] = b;
            counter[0]++;
            return true;
        }
    });
    for (FilterCandidates result : candidates) {
        // Count the number of fit results that matched (tp) and did not match (fp)
        tp += result.tp;
        fp += result.fp;
        for (int i = 0; i < result.fitResult.length; i++) {
            if (result.spots[i].match)
                cTP++;
            else
                cFP++;
            final MultiPathFitResult fitResult = result.fitResult[i];
            if (singleStatus != null && result.spots[i].match) {
                // Debugging reasons for fit failure
                addStatus(singleStatus, fitResult.getSingleFitResult());
                addStatus(multiStatus, fitResult.getMultiFitResult());
                addStatus(doubletStatus, fitResult.getDoubletFitResult());
                addStatus(multiDoubletStatus, fitResult.getMultiDoubletFitResult());
            }
            if (noMatch(fitResult)) {
                if (result.spots[i].match)
                    failcTP++;
                else
                    failcFP++;
            }
            // We have multi-path results.
            // We want statistics for:
            // [0] all fitted spots
            // [1] fitted spots that match a result
            // [2] fitted spots that do not match a result
            addToStats(fitResult.getSingleFitResult(), stats);
            addToStats(fitResult.getMultiFitResult(), stats);
            addToStats(fitResult.getDoubletFitResult(), stats);
            addToStats(fitResult.getMultiDoubletFitResult(), stats);
        }
        // Statistics on spots that fit an actual result
        for (int i = 0; i < result.match.length; i++) {
            if (!result.match[i].isFitResult())
                // For now just ignore the candidates that matched
                continue;
            FitMatch fitMatch = (FitMatch) result.match[i];
            distanceStats.add(fitMatch.d * nmPerPixel);
            depthStats.add(fitMatch.z * nmPerPixel);
        }
    }
    // Store data for computing correlation
    double[] i1 = new double[depthStats.getN()];
    double[] i2 = new double[i1.length];
    double[] is = new double[i1.length];
    int ci = 0;
    for (FilterCandidates result : candidates) {
        for (int i = 0; i < result.match.length; i++) {
            if (!result.match[i].isFitResult())
                // For now just ignore the candidates that matched
                continue;
            FitMatch fitMatch = (FitMatch) result.match[i];
            ScoredSpot spot = result.spots[fitMatch.i];
            i1[ci] = fitMatch.predictedSignal;
            i2[ci] = fitMatch.actualSignal;
            is[ci] = spot.spot.intensity;
            ci++;
        }
    }
    // We want to compute the Jaccard against the spot metric
    // Filter the results using the multi-path filter
    ArrayList<MultiPathFitResults> multiPathResults = new ArrayList<MultiPathFitResults>(filterCandidates.size());
    for (int i = 0; i < frames.length; i++) {
        int frame = frames[i];
        MultiPathFitResult[] multiPathFitResults = candidates[i].fitResult;
        int totalCandidates = candidates[i].spots.length;
        int nActual = actualCoordinates.get(frame).size();
        multiPathResults.add(new MultiPathFitResults(frame, multiPathFitResults, totalCandidates, nActual));
    }
    // Score the results and count the number returned
    List<FractionalAssignment[]> assignments = new ArrayList<FractionalAssignment[]>();
    final TIntHashSet set = new TIntHashSet(nUniqueIDs);
    FractionScoreStore scoreStore = new FractionScoreStore() {

        public void add(int uniqueId) {
            set.add(uniqueId);
        }
    };
    MultiPathFitResults[] multiResults = multiPathResults.toArray(new MultiPathFitResults[multiPathResults.size()]);
    // Filter with no filter
    MultiPathFilter mpf = new MultiPathFilter(new SignalFilter(0), null, multiFilter.residualsThreshold);
    FractionClassificationResult fractionResult = mpf.fractionScoreSubset(multiResults, Integer.MAX_VALUE, this.results.size(), assignments, scoreStore, CoordinateStoreFactory.create(imp.getWidth(), imp.getHeight(), fitConfig.getDuplicateDistance()));
    double nPredicted = fractionResult.getTP() + fractionResult.getFP();
    final double[][] matchScores = new double[set.size()][];
    int count = 0;
    for (int i = 0; i < assignments.size(); i++) {
        FractionalAssignment[] a = assignments.get(i);
        if (a == null)
            continue;
        for (int j = 0; j < a.length; j++) {
            final PreprocessedPeakResult r = ((PeakFractionalAssignment) a[j]).peakResult;
            set.remove(r.getUniqueId());
            final double precision = Math.sqrt(r.getLocationVariance());
            final double signal = r.getSignal();
            final double snr = r.getSNR();
            final double width = r.getXSDFactor();
            final double xShift = r.getXRelativeShift2();
            final double yShift = r.getYRelativeShift2();
            // Since these two are combined for filtering and the max is what matters.
            final double shift = (xShift > yShift) ? Math.sqrt(xShift) : Math.sqrt(yShift);
            final double eshift = Math.sqrt(xShift + yShift);
            final double[] score = new double[8];
            score[FILTER_SIGNAL] = signal;
            score[FILTER_SNR] = snr;
            score[FILTER_MIN_WIDTH] = width;
            score[FILTER_MAX_WIDTH] = width;
            score[FILTER_SHIFT] = shift;
            score[FILTER_ESHIFT] = eshift;
            score[FILTER_PRECISION] = precision;
            score[FILTER_PRECISION + 1] = a[j].getScore();
            matchScores[count++] = score;
        }
    }
    // Add the rest
    set.forEach(new CustomTIntProcedure(count) {

        public boolean execute(int uniqueId) {
            // This should not be null or something has gone wrong
            PreprocessedPeakResult r = preprocessedPeakResults[uniqueId];
            if (r == null)
                throw new RuntimeException("Missing result: " + uniqueId);
            final double precision = Math.sqrt(r.getLocationVariance());
            final double signal = r.getSignal();
            final double snr = r.getSNR();
            final double width = r.getXSDFactor();
            final double xShift = r.getXRelativeShift2();
            final double yShift = r.getYRelativeShift2();
            // Since these two are combined for filtering and the max is what matters.
            final double shift = (xShift > yShift) ? Math.sqrt(xShift) : Math.sqrt(yShift);
            final double eshift = Math.sqrt(xShift + yShift);
            final double[] score = new double[8];
            score[FILTER_SIGNAL] = signal;
            score[FILTER_SNR] = snr;
            score[FILTER_MIN_WIDTH] = width;
            score[FILTER_MAX_WIDTH] = width;
            score[FILTER_SHIFT] = shift;
            score[FILTER_ESHIFT] = eshift;
            score[FILTER_PRECISION] = precision;
            matchScores[c++] = score;
            return true;
        }
    });
    // Debug the reasons the fit failed
    if (singleStatus != null) {
        String name = PeakFit.getSolverName(fitConfig);
        if (fitConfig.getFitSolver() == FitSolver.MLE && fitConfig.isModelCamera())
            name += " Camera";
        System.out.println("Failure counts: " + name);
        printFailures("Single", singleStatus);
        printFailures("Multi", multiStatus);
        printFailures("Doublet", doubletStatus);
        printFailures("Multi doublet", multiDoubletStatus);
    }
    StringBuilder sb = new StringBuilder(300);
    // Add information about the simulation
    //(simulationParameters.minSignal + simulationParameters.maxSignal) * 0.5;
    final double signal = simulationParameters.signalPerFrame;
    final int n = results.size();
    sb.append(imp.getStackSize()).append("\t");
    final int w = imp.getWidth();
    final int h = imp.getHeight();
    sb.append(w).append("\t");
    sb.append(h).append("\t");
    sb.append(n).append("\t");
    double density = ((double) n / imp.getStackSize()) / (w * h) / (simulationParameters.a * simulationParameters.a / 1e6);
    sb.append(Utils.rounded(density)).append("\t");
    sb.append(Utils.rounded(signal)).append("\t");
    sb.append(Utils.rounded(simulationParameters.s)).append("\t");
    sb.append(Utils.rounded(simulationParameters.a)).append("\t");
    sb.append(Utils.rounded(simulationParameters.depth)).append("\t");
    sb.append(simulationParameters.fixedDepth).append("\t");
    sb.append(Utils.rounded(simulationParameters.gain)).append("\t");
    sb.append(Utils.rounded(simulationParameters.readNoise)).append("\t");
    sb.append(Utils.rounded(simulationParameters.b)).append("\t");
    sb.append(Utils.rounded(simulationParameters.b2)).append("\t");
    // Compute the noise
    double noise = simulationParameters.b2;
    if (simulationParameters.emCCD) {
        // The b2 parameter was computed without application of the EM-CCD noise factor of 2.
        //final double b2 = backgroundVariance + readVariance
        //                = simulationParameters.b + readVariance
        // This should be applied only to the background variance.
        final double readVariance = noise - simulationParameters.b;
        noise = simulationParameters.b * 2 + readVariance;
    }
    if (simulationParameters.fullSimulation) {
    // The total signal is spread over frames
    }
    sb.append(Utils.rounded(signal / Math.sqrt(noise))).append("\t");
    sb.append(Utils.rounded(simulationParameters.s / simulationParameters.a)).append("\t");
    sb.append(spotFilter.getDescription());
    // nP and nN is the fractional score of the spot candidates 
    addCount(sb, nP + nN);
    addCount(sb, nP);
    addCount(sb, nN);
    addCount(sb, fP);
    addCount(sb, fN);
    String name = PeakFit.getSolverName(fitConfig);
    if (fitConfig.getFitSolver() == FitSolver.MLE && fitConfig.isModelCamera())
        name += " Camera";
    add(sb, name);
    add(sb, config.getFitting());
    resultPrefix = sb.toString();
    // Q. Should I add other fit configuration here?
    // The fraction of positive and negative candidates that were included
    add(sb, (100.0 * cTP) / nP);
    add(sb, (100.0 * cFP) / nN);
    // Score the fitting results compared to the original simulation.
    // Score the candidate selection:
    add(sb, cTP + cFP);
    add(sb, cTP);
    add(sb, cFP);
    // TP are all candidates that can be matched to a spot
    // FP are all candidates that cannot be matched to a spot
    // FN = The number of missed spots
    FractionClassificationResult m = new FractionClassificationResult(cTP, cFP, 0, simulationParameters.molecules - cTP);
    add(sb, m.getRecall());
    add(sb, m.getPrecision());
    add(sb, m.getF1Score());
    add(sb, m.getJaccard());
    // Score the fitting results:
    add(sb, failcTP);
    add(sb, failcFP);
    // TP are all fit results that can be matched to a spot
    // FP are all fit results that cannot be matched to a spot
    // FN = The number of missed spots
    add(sb, tp);
    add(sb, fp);
    m = new FractionClassificationResult(tp, fp, 0, simulationParameters.molecules - tp);
    add(sb, m.getRecall());
    add(sb, m.getPrecision());
    add(sb, m.getF1Score());
    add(sb, m.getJaccard());
    // Do it again but pretend we can perfectly filter all the false positives
    //add(sb, tp);
    m = new FractionClassificationResult(tp, 0, 0, simulationParameters.molecules - tp);
    // Recall is unchanged
    // Precision will be 100%
    add(sb, m.getF1Score());
    add(sb, m.getJaccard());
    // The mean may be subject to extreme outliers so use the median
    double median = distanceStats.getMedian();
    add(sb, median);
    WindowOrganiser wo = new WindowOrganiser();
    String label = String.format("Recall = %s. n = %d. Median = %s nm. SD = %s nm", Utils.rounded(m.getRecall()), distanceStats.getN(), Utils.rounded(median), Utils.rounded(distanceStats.getStandardDeviation()));
    int id = Utils.showHistogram(TITLE, distanceStats, "Match Distance (nm)", 0, 0, 0, label);
    if (Utils.isNewWindow())
        wo.add(id);
    median = depthStats.getMedian();
    add(sb, median);
    // Sort by spot intensity and produce correlation
    int[] indices = Utils.newArray(i1.length, 0, 1);
    if (showCorrelation)
        Sort.sort(indices, is, rankByIntensity);
    double[] r = (showCorrelation) ? new double[i1.length] : null;
    double[] sr = (showCorrelation) ? new double[i1.length] : null;
    double[] rank = (showCorrelation) ? new double[i1.length] : null;
    ci = 0;
    FastCorrelator fastCorrelator = new FastCorrelator();
    ArrayList<Ranking> pc1 = new ArrayList<Ranking>();
    ArrayList<Ranking> pc2 = new ArrayList<Ranking>();
    for (int ci2 : indices) {
        fastCorrelator.add((long) Math.round(i1[ci2]), (long) Math.round(i2[ci2]));
        pc1.add(new Ranking(i1[ci2], ci));
        pc2.add(new Ranking(i2[ci2], ci));
        if (showCorrelation) {
            r[ci] = fastCorrelator.getCorrelation();
            sr[ci] = Correlator.correlation(rank(pc1), rank(pc2));
            if (rankByIntensity)
                rank[ci] = is[0] - is[ci];
            else
                rank[ci] = ci;
        }
        ci++;
    }
    final double pearsonCorr = fastCorrelator.getCorrelation();
    final double rankedCorr = Correlator.correlation(rank(pc1), rank(pc2));
    // Get the regression
    SimpleRegression regression = new SimpleRegression(false);
    for (int i = 0; i < pc1.size(); i++) regression.addData(pc1.get(i).value, pc2.get(i).value);
    //final double intercept = regression.getIntercept();
    final double slope = regression.getSlope();
    if (showCorrelation) {
        String title = TITLE + " Intensity";
        Plot plot = new Plot(title, "Candidate", "Spot");
        double[] limits1 = Maths.limits(i1);
        double[] limits2 = Maths.limits(i2);
        plot.setLimits(limits1[0], limits1[1], limits2[0], limits2[1]);
        label = String.format("Correlation=%s; Ranked=%s; Slope=%s", Utils.rounded(pearsonCorr), Utils.rounded(rankedCorr), Utils.rounded(slope));
        plot.addLabel(0, 0, label);
        plot.setColor(Color.red);
        plot.addPoints(i1, i2, Plot.DOT);
        if (slope > 1)
            plot.drawLine(limits1[0], limits1[0] * slope, limits1[1], limits1[1] * slope);
        else
            plot.drawLine(limits2[0] / slope, limits2[0], limits2[1] / slope, limits2[1]);
        PlotWindow pw = Utils.display(title, plot);
        if (Utils.isNewWindow())
            wo.add(pw);
        title = TITLE + " Correlation";
        plot = new Plot(title, "Spot Rank", "Correlation");
        double[] xlimits = Maths.limits(rank);
        double[] ylimits = Maths.limits(r);
        ylimits = Maths.limits(ylimits, sr);
        plot.setLimits(xlimits[0], xlimits[1], ylimits[0], ylimits[1]);
        plot.setColor(Color.red);
        plot.addPoints(rank, r, Plot.LINE);
        plot.setColor(Color.blue);
        plot.addPoints(rank, sr, Plot.LINE);
        plot.setColor(Color.black);
        plot.addLabel(0, 0, label);
        pw = Utils.display(title, plot);
        if (Utils.isNewWindow())
            wo.add(pw);
    }
    add(sb, pearsonCorr);
    add(sb, rankedCorr);
    add(sb, slope);
    label = String.format("n = %d. Median = %s nm", depthStats.getN(), Utils.rounded(median));
    id = Utils.showHistogram(TITLE, depthStats, "Match Depth (nm)", 0, 1, 0, label);
    if (Utils.isNewWindow())
        wo.add(id);
    // Plot histograms of the stats on the same window
    double[] lower = new double[filterCriteria.length];
    double[] upper = new double[lower.length];
    min = new double[lower.length];
    max = new double[lower.length];
    for (int i = 0; i < stats[0].length; i++) {
        double[] limits = showDoubleHistogram(stats, i, wo, matchScores, nPredicted);
        lower[i] = limits[0];
        upper[i] = limits[1];
        min[i] = limits[2];
        max[i] = limits[3];
    }
    // Reconfigure some of the range limits
    // Make this a bit bigger
    upper[FILTER_SIGNAL] *= 2;
    // Make this a bit bigger
    upper[FILTER_SNR] *= 2;
    double factor = 0.25;
    if (lower[FILTER_MIN_WIDTH] != 0)
        // (assuming lower is less than 1)
        upper[FILTER_MIN_WIDTH] = 1 - Math.max(0, factor * (1 - lower[FILTER_MIN_WIDTH]));
    if (upper[FILTER_MIN_WIDTH] != 0)
        // (assuming upper is more than 1)
        lower[FILTER_MAX_WIDTH] = 1 + Math.max(0, factor * (upper[FILTER_MAX_WIDTH] - 1));
    // Round the ranges
    final double[] interval = new double[stats[0].length];
    interval[FILTER_SIGNAL] = SignalFilter.DEFAULT_INCREMENT;
    interval[FILTER_SNR] = SNRFilter.DEFAULT_INCREMENT;
    interval[FILTER_MIN_WIDTH] = WidthFilter2.DEFAULT_MIN_INCREMENT;
    interval[FILTER_MAX_WIDTH] = WidthFilter.DEFAULT_INCREMENT;
    interval[FILTER_SHIFT] = ShiftFilter.DEFAULT_INCREMENT;
    interval[FILTER_ESHIFT] = EShiftFilter.DEFAULT_INCREMENT;
    interval[FILTER_PRECISION] = PrecisionFilter.DEFAULT_INCREMENT;
    interval[FILTER_ITERATIONS] = 0.1;
    interval[FILTER_EVALUATIONS] = 0.1;
    // Create a range increment
    double[] increment = new double[lower.length];
    for (int i = 0; i < increment.length; i++) {
        lower[i] = Maths.floor(lower[i], interval[i]);
        upper[i] = Maths.ceil(upper[i], interval[i]);
        double range = upper[i] - lower[i];
        // Allow clipping if the range is small compared to the min increment
        double multiples = range / interval[i];
        // Use 8 multiples for the equivalent of +/- 4 steps around the centre
        if (multiples < 8) {
            multiples = Math.ceil(multiples);
        } else
            multiples = 8;
        increment[i] = Maths.ceil(range / multiples, interval[i]);
        if (i == FILTER_MIN_WIDTH)
            // Requires clipping based on the upper limit
            lower[i] = upper[i] - increment[i] * multiples;
        else
            upper[i] = lower[i] + increment[i] * multiples;
    }
    for (int i = 0; i < stats[0].length; i++) {
        lower[i] = Maths.round(lower[i]);
        upper[i] = Maths.round(upper[i]);
        min[i] = Maths.round(min[i]);
        max[i] = Maths.round(max[i]);
        increment[i] = Maths.round(increment[i]);
        sb.append("\t").append(min[i]).append(':').append(lower[i]).append('-').append(upper[i]).append(':').append(max[i]);
    }
    // Disable some filters
    increment[FILTER_SIGNAL] = Double.POSITIVE_INFINITY;
    //increment[FILTER_SHIFT] = Double.POSITIVE_INFINITY;
    increment[FILTER_ESHIFT] = Double.POSITIVE_INFINITY;
    wo.tile();
    sb.append("\t").append(Utils.timeToString(runTime / 1000000.0));
    summaryTable.append(sb.toString());
    if (saveFilterRange) {
        GlobalSettings gs = SettingsManager.loadSettings();
        FilterSettings filterSettings = gs.getFilterSettings();
        String filename = (silent) ? filterSettings.filterSetFilename : Utils.getFilename("Filter_range_file", filterSettings.filterSetFilename);
        if (filename == null)
            return;
        // Remove extension to store the filename
        filename = Utils.replaceExtension(filename, ".xml");
        filterSettings.filterSetFilename = filename;
        // Create a filter set using the ranges
        ArrayList<Filter> filters = new ArrayList<Filter>(3);
        filters.add(new MultiFilter2(lower[0], (float) lower[1], lower[2], lower[3], lower[4], lower[5], lower[6]));
        filters.add(new MultiFilter2(upper[0], (float) upper[1], upper[2], upper[3], upper[4], upper[5], upper[6]));
        filters.add(new MultiFilter2(increment[0], (float) increment[1], increment[2], increment[3], increment[4], increment[5], increment[6]));
        if (saveFilters(filename, filters))
            SettingsManager.saveSettings(gs);
        // Create a filter set using the min/max and the initial bounds.
        // Set sensible limits
        min[FILTER_SIGNAL] = Math.max(min[FILTER_SIGNAL], 30);
        max[FILTER_PRECISION] = Math.min(max[FILTER_PRECISION], 100);
        // Commented this out so that the 4-set filters are the same as the 3-set filters.
        // The difference leads to differences when optimising.
        //			// Use half the initial bounds (hoping this is a good starting guess for the optimum)
        //			final boolean[] limitToLower = new boolean[min.length];
        //			limitToLower[FILTER_SIGNAL] = true;
        //			limitToLower[FILTER_SNR] = true;
        //			limitToLower[FILTER_MIN_WIDTH] = true;
        //			limitToLower[FILTER_MAX_WIDTH] = false;
        //			limitToLower[FILTER_SHIFT] = false;
        //			limitToLower[FILTER_ESHIFT] = false;
        //			limitToLower[FILTER_PRECISION] = true;
        //			for (int i = 0; i < limitToLower.length; i++)
        //			{
        //				final double range = (upper[i] - lower[i]) / 2;
        //				if (limitToLower[i])
        //					upper[i] = lower[i] + range;
        //				else
        //					lower[i] = upper[i] - range;
        //			}
        filters = new ArrayList<Filter>(4);
        filters.add(new MultiFilter2(min[0], (float) min[1], min[2], min[3], min[4], min[5], min[6]));
        filters.add(new MultiFilter2(lower[0], (float) lower[1], lower[2], lower[3], lower[4], lower[5], lower[6]));
        filters.add(new MultiFilter2(upper[0], (float) upper[1], upper[2], upper[3], upper[4], upper[5], upper[6]));
        filters.add(new MultiFilter2(max[0], (float) max[1], max[2], max[3], max[4], max[5], max[6]));
        saveFilters(Utils.replaceExtension(filename, ".4.xml"), filters);
    }
}
Also used : ArrayList(java.util.ArrayList) TIntHashSet(gnu.trove.set.hash.TIntHashSet) MultiPathFitResult(gdsc.smlm.results.filter.MultiPathFitResult) FractionalAssignment(gdsc.core.match.FractionalAssignment) PeakFractionalAssignment(gdsc.smlm.results.filter.PeakFractionalAssignment) ImmutableFractionalAssignment(gdsc.core.match.ImmutableFractionalAssignment) FractionClassificationResult(gdsc.core.match.FractionClassificationResult) BasePreprocessedPeakResult(gdsc.smlm.results.filter.BasePreprocessedPeakResult) PreprocessedPeakResult(gdsc.smlm.results.filter.PreprocessedPeakResult) SignalFilter(gdsc.smlm.results.filter.SignalFilter) FilterSettings(gdsc.smlm.ij.settings.FilterSettings) ScoredSpot(gdsc.smlm.ij.plugins.BenchmarkSpotFilter.ScoredSpot) FastCorrelator(gdsc.core.utils.FastCorrelator) Plot(ij.gui.Plot) StoredDataStatistics(gdsc.core.utils.StoredDataStatistics) PlotWindow(ij.gui.PlotWindow) GlobalSettings(gdsc.smlm.ij.settings.GlobalSettings) WindowOrganiser(ij.plugin.WindowOrganiser) PeakResultPoint(gdsc.smlm.ij.plugins.ResultsMatchCalculator.PeakResultPoint) BasePoint(gdsc.core.match.BasePoint) PeakFractionalAssignment(gdsc.smlm.results.filter.PeakFractionalAssignment) FractionScoreStore(gdsc.smlm.results.filter.MultiPathFilter.FractionScoreStore) SimpleRegression(org.apache.commons.math3.stat.regression.SimpleRegression) SignalFilter(gdsc.smlm.results.filter.SignalFilter) DirectFilter(gdsc.smlm.results.filter.DirectFilter) ShiftFilter(gdsc.smlm.results.filter.ShiftFilter) PrecisionFilter(gdsc.smlm.results.filter.PrecisionFilter) Filter(gdsc.smlm.results.filter.Filter) EShiftFilter(gdsc.smlm.results.filter.EShiftFilter) WidthFilter(gdsc.smlm.results.filter.WidthFilter) SNRFilter(gdsc.smlm.results.filter.SNRFilter) MultiPathFilter(gdsc.smlm.results.filter.MultiPathFilter) MaximaSpotFilter(gdsc.smlm.filters.MaximaSpotFilter) MultiFilter2(gdsc.smlm.results.filter.MultiFilter2) MultiPathFitResults(gdsc.smlm.results.filter.MultiPathFitResults) MultiPathFilter(gdsc.smlm.results.filter.MultiPathFilter)

Example 29 with Median

use of org.apache.commons.math3.stat.descriptive.rank.Median in project GDSC-SMLM by aherbert.

the class BenchmarkSpotFit method showDoubleHistogram.

private double[] showDoubleHistogram(StoredDataStatistics[][] stats, final int i, WindowOrganiser wo, double[][] matchScores, double nPredicted) {
    String xLabel = filterCriteria[i].name;
    LowerLimit lower = filterCriteria[i].lower;
    UpperLimit upper = filterCriteria[i].upper;
    double[] j = null;
    double[] metric = null;
    double maxJ = 0;
    if (i <= FILTER_PRECISION && (showFilterScoreHistograms || upper.requiresJaccard || lower.requiresJaccard)) {
        // Jaccard score verses the range of the metric
        Arrays.sort(matchScores, new Comparator<double[]>() {

            public int compare(double[] o1, double[] o2) {
                if (o1[i] < o2[i])
                    return -1;
                if (o1[i] > o2[i])
                    return 1;
                return 0;
            }
        });
        final int scoreIndex = FILTER_PRECISION + 1;
        int n = results.size();
        double tp = 0;
        double fp = 0;
        j = new double[matchScores.length + 1];
        metric = new double[j.length];
        for (int k = 0; k < matchScores.length; k++) {
            final double score = matchScores[k][scoreIndex];
            tp += score;
            fp += (1 - score);
            j[k + 1] = tp / (fp + n);
            metric[k + 1] = matchScores[k][i];
        }
        metric[0] = metric[1];
        maxJ = Maths.max(j);
        if (showFilterScoreHistograms) {
            String title = TITLE + " Jaccard " + xLabel;
            Plot plot = new Plot(title, xLabel, "Jaccard", metric, j);
            // Remove outliers
            double[] limitsx = Maths.limits(metric);
            Percentile p = new Percentile();
            double l = p.evaluate(metric, 25);
            double u = p.evaluate(metric, 75);
            double iqr = 1.5 * (u - l);
            limitsx[1] = Math.min(limitsx[1], u + iqr);
            plot.setLimits(limitsx[0], limitsx[1], 0, Maths.max(j));
            PlotWindow pw = Utils.display(title, plot);
            if (Utils.isNewWindow())
                wo.add(pw);
        }
    }
    // [0] is all
    // [1] is matches
    // [2] is no match
    StoredDataStatistics s1 = stats[0][i];
    StoredDataStatistics s2 = stats[1][i];
    StoredDataStatistics s3 = stats[2][i];
    if (s1.getN() == 0)
        return new double[4];
    DescriptiveStatistics d = s1.getStatistics();
    double median = 0;
    Plot2 plot = null;
    String title = null;
    if (showFilterScoreHistograms) {
        median = d.getPercentile(50);
        String label = String.format("n = %d. Median = %s nm", s1.getN(), Utils.rounded(median));
        int id = Utils.showHistogram(TITLE, s1, xLabel, filterCriteria[i].minBinWidth, (filterCriteria[i].restrictRange) ? 1 : 0, 0, label);
        if (id == 0) {
            IJ.log("Failed to show the histogram: " + xLabel);
            return new double[4];
        }
        if (Utils.isNewWindow())
            wo.add(id);
        title = WindowManager.getImage(id).getTitle();
        // Reverse engineer the histogram settings
        plot = Utils.plot;
        double[] xValues = Utils.xValues;
        int bins = xValues.length;
        double yMin = xValues[0];
        double binSize = xValues[1] - xValues[0];
        double yMax = xValues[0] + (bins - 1) * binSize;
        if (s2.getN() > 0) {
            double[] values = s2.getValues();
            double[][] hist = Utils.calcHistogram(values, yMin, yMax, bins);
            if (hist[0].length > 0) {
                plot.setColor(Color.red);
                plot.addPoints(hist[0], hist[1], Plot2.BAR);
                Utils.display(title, plot);
            }
        }
        if (s3.getN() > 0) {
            double[] values = s3.getValues();
            double[][] hist = Utils.calcHistogram(values, yMin, yMax, bins);
            if (hist[0].length > 0) {
                plot.setColor(Color.blue);
                plot.addPoints(hist[0], hist[1], Plot2.BAR);
                Utils.display(title, plot);
            }
        }
    }
    // Do cumulative histogram
    double[][] h1 = Maths.cumulativeHistogram(s1.getValues(), true);
    double[][] h2 = Maths.cumulativeHistogram(s2.getValues(), true);
    double[][] h3 = Maths.cumulativeHistogram(s3.getValues(), true);
    if (showFilterScoreHistograms) {
        title = TITLE + " Cumul " + xLabel;
        plot = new Plot2(title, xLabel, "Frequency");
        // Find limits
        double[] xlimit = Maths.limits(h1[0]);
        xlimit = Maths.limits(xlimit, h2[0]);
        xlimit = Maths.limits(xlimit, h3[0]);
        // Restrict using the inter-quartile range 
        if (filterCriteria[i].restrictRange) {
            double q1 = d.getPercentile(25);
            double q2 = d.getPercentile(75);
            double iqr = (q2 - q1) * 2.5;
            xlimit[0] = Maths.max(xlimit[0], median - iqr);
            xlimit[1] = Maths.min(xlimit[1], median + iqr);
        }
        plot.setLimits(xlimit[0], xlimit[1], 0, 1.05);
        plot.addPoints(h1[0], h1[1], Plot.LINE);
        plot.setColor(Color.red);
        plot.addPoints(h2[0], h2[1], Plot.LINE);
        plot.setColor(Color.blue);
        plot.addPoints(h3[0], h3[1], Plot.LINE);
    }
    // Determine the maximum difference between the TP and FP
    double maxx1 = 0;
    double maxx2 = 0;
    double max1 = 0;
    double max2 = 0;
    // We cannot compute the delta histogram, or use percentiles
    if (s2.getN() == 0) {
        upper = UpperLimit.ZERO;
        lower = LowerLimit.ZERO;
    }
    final boolean requireLabel = (showFilterScoreHistograms && filterCriteria[i].requireLabel);
    if (requireLabel || upper.requiresDeltaHistogram() || lower.requiresDeltaHistogram()) {
        if (s2.getN() != 0 && s3.getN() != 0) {
            LinearInterpolator li = new LinearInterpolator();
            PolynomialSplineFunction f1 = li.interpolate(h2[0], h2[1]);
            PolynomialSplineFunction f2 = li.interpolate(h3[0], h3[1]);
            for (double x : h1[0]) {
                if (x < h2[0][0] || x < h3[0][0])
                    continue;
                try {
                    double v1 = f1.value(x);
                    double v2 = f2.value(x);
                    double diff = v2 - v1;
                    if (diff > 0) {
                        if (max1 < diff) {
                            max1 = diff;
                            maxx1 = x;
                        }
                    } else {
                        if (max2 > diff) {
                            max2 = diff;
                            maxx2 = x;
                        }
                    }
                } catch (OutOfRangeException e) {
                    // Because we reached the end
                    break;
                }
            }
        } else {
            // Switch to percentiles if we have no delta histogram
            if (upper.requiresDeltaHistogram())
                upper = UpperLimit.NINETY_NINE_PERCENT;
            if (lower.requiresDeltaHistogram())
                lower = LowerLimit.ONE_PERCENT;
        }
    //			System.out.printf("Bounds %s : %s, pos %s, neg %s, %s\n", xLabel, Utils.rounded(getPercentile(h2, 0.01)),
    //					Utils.rounded(maxx1), Utils.rounded(maxx2), Utils.rounded(getPercentile(h1, 0.99)));
    }
    if (showFilterScoreHistograms) {
        // We use bins=1 on charts where we do not need a label
        if (requireLabel) {
            String label = String.format("Max+ %s @ %s, Max- %s @ %s", Utils.rounded(max1), Utils.rounded(maxx1), Utils.rounded(max2), Utils.rounded(maxx2));
            plot.setColor(Color.black);
            plot.addLabel(0, 0, label);
        }
        PlotWindow pw = Utils.display(title, plot);
        if (Utils.isNewWindow())
            wo.add(pw.getImagePlus().getID());
    }
    // Now compute the bounds using the desired limit
    double l, u;
    switch(lower) {
        case ONE_PERCENT:
            l = getPercentile(h2, 0.01);
            break;
        case MAX_NEGATIVE_CUMUL_DELTA:
            l = maxx2;
            break;
        case ZERO:
            l = 0;
            break;
        case HALF_MAX_JACCARD_VALUE:
            l = getValue(metric, j, maxJ * 0.5);
            break;
        default:
            throw new RuntimeException("Missing lower limit method");
    }
    switch(upper) {
        case MAX_POSITIVE_CUMUL_DELTA:
            u = maxx1;
            break;
        case NINETY_NINE_PERCENT:
            u = getPercentile(h2, 0.99);
            break;
        case NINETY_NINE_NINE_PERCENT:
            u = getPercentile(h2, 0.999);
            break;
        case ZERO:
            u = 0;
            break;
        case MAX_JACCARD2:
            u = getValue(metric, j, maxJ) * 2;
            //System.out.printf("MaxJ = %.4f @ %.3f\n", maxJ, u / 2);
            break;
        default:
            throw new RuntimeException("Missing upper limit method");
    }
    double min = getPercentile(h1, 0);
    double max = getPercentile(h1, 1);
    return new double[] { l, u, min, max };
}
Also used : DescriptiveStatistics(org.apache.commons.math3.stat.descriptive.DescriptiveStatistics) Percentile(org.apache.commons.math3.stat.descriptive.rank.Percentile) Plot(ij.gui.Plot) StoredDataStatistics(gdsc.core.utils.StoredDataStatistics) PlotWindow(ij.gui.PlotWindow) Plot2(ij.gui.Plot2) PolynomialSplineFunction(org.apache.commons.math3.analysis.polynomials.PolynomialSplineFunction) PeakResultPoint(gdsc.smlm.ij.plugins.ResultsMatchCalculator.PeakResultPoint) BasePoint(gdsc.core.match.BasePoint) LinearInterpolator(org.apache.commons.math3.analysis.interpolation.LinearInterpolator) OutOfRangeException(org.apache.commons.math3.exception.OutOfRangeException)

Example 30 with Median

use of org.apache.commons.math3.stat.descriptive.rank.Median in project GDSC-SMLM by aherbert.

the class MeanVarianceTest method run.

/*
	 * (non-Javadoc)
	 * 
	 * @see ij.plugin.PlugIn#run(java.lang.String)
	 */
public void run(String arg) {
    SMLMUsageTracker.recordPlugin(this.getClass(), arg);
    if (Utils.isExtraOptions()) {
        ImagePlus imp = WindowManager.getCurrentImage();
        if (imp.getStackSize() > 1) {
            GenericDialog gd = new GenericDialog(TITLE);
            gd.addMessage("Perform single image analysis on the current image?");
            gd.addNumericField("Bias", _bias, 0);
            gd.showDialog();
            if (gd.wasCanceled())
                return;
            singleImage = true;
            _bias = Math.abs(gd.getNextNumber());
        } else {
            IJ.error(TITLE, "Single-image mode requires a stack");
            return;
        }
    }
    List<ImageSample> images;
    String inputDirectory = "";
    if (singleImage) {
        IJ.showStatus("Loading images...");
        images = getImages();
        if (images.size() == 0) {
            IJ.error(TITLE, "Not enough images for analysis");
            return;
        }
    } else {
        inputDirectory = IJ.getDirectory("Select image series ...");
        if (inputDirectory == null)
            return;
        SeriesOpener series = new SeriesOpener(inputDirectory, false, 0);
        series.setVariableSize(true);
        if (series.getNumberOfImages() < 3) {
            IJ.error(TITLE, "Not enough images in the selected directory");
            return;
        }
        if (!IJ.showMessageWithCancel(TITLE, String.format("Analyse %d images, first image:\n%s", series.getNumberOfImages(), series.getImageList()[0]))) {
            return;
        }
        IJ.showStatus("Loading images");
        images = getImages(series);
        if (images.size() < 3) {
            IJ.error(TITLE, "Not enough images for analysis");
            return;
        }
        if (images.get(0).exposure != 0) {
            IJ.error(TITLE, "First image in series must have exposure 0 (Bias image)");
            return;
        }
    }
    boolean emMode = (arg != null && arg.contains("em"));
    GenericDialog gd = new GenericDialog(TITLE);
    gd.addMessage("Set the output options:");
    gd.addCheckbox("Show_table", showTable);
    gd.addCheckbox("Show_charts", showCharts);
    if (emMode) {
        // Ask the user for the camera gain ...
        gd.addMessage("Estimating the EM-gain requires the camera gain without EM readout enabled");
        gd.addNumericField("Camera_gain (ADU/e-)", cameraGain, 4);
    }
    gd.showDialog();
    if (gd.wasCanceled())
        return;
    showTable = gd.getNextBoolean();
    showCharts = gd.getNextBoolean();
    if (emMode) {
        cameraGain = gd.getNextNumber();
    }
    IJ.showStatus("Computing mean & variance");
    final double nImages = images.size();
    for (int i = 0; i < images.size(); i++) {
        IJ.showStatus(String.format("Computing mean & variance %d/%d", i + 1, images.size()));
        images.get(i).compute(singleImage, i / nImages, (i + 1) / nImages);
    }
    IJ.showProgress(1);
    IJ.showStatus("Computing results");
    // Allow user to input multiple bias images
    int start = 0;
    Statistics biasStats = new Statistics();
    Statistics noiseStats = new Statistics();
    final double bias;
    if (singleImage) {
        bias = _bias;
    } else {
        while (start < images.size()) {
            ImageSample sample = images.get(start);
            if (sample.exposure == 0) {
                biasStats.add(sample.means);
                for (PairSample pair : sample.samples) {
                    noiseStats.add(pair.variance);
                }
                start++;
            } else
                break;
        }
        bias = biasStats.getMean();
    }
    // Get the mean-variance data
    int total = 0;
    for (int i = start; i < images.size(); i++) total += images.get(i).samples.size();
    if (showTable && total > 2000) {
        gd = new GenericDialog(TITLE);
        gd.addMessage("Table output requires " + total + " entries.\n \nYou may want to disable the table.");
        gd.addCheckbox("Show_table", showTable);
        gd.showDialog();
        if (gd.wasCanceled())
            return;
        showTable = gd.getNextBoolean();
    }
    TextWindow results = (showTable) ? createResultsWindow() : null;
    double[] mean = new double[total];
    double[] variance = new double[mean.length];
    Statistics gainStats = (singleImage) ? new StoredDataStatistics(total) : new Statistics();
    final WeightedObservedPoints obs = new WeightedObservedPoints();
    for (int i = (singleImage) ? 0 : start, j = 0; i < images.size(); i++) {
        StringBuilder sb = (showTable) ? new StringBuilder() : null;
        ImageSample sample = images.get(i);
        for (PairSample pair : sample.samples) {
            if (j % 16 == 0)
                IJ.showProgress(j, total);
            mean[j] = pair.getMean();
            variance[j] = pair.variance;
            // Gain is in ADU / e
            double gain = variance[j] / (mean[j] - bias);
            gainStats.add(gain);
            obs.add(mean[j], variance[j]);
            if (emMode) {
                gain /= (2 * cameraGain);
            }
            if (showTable) {
                sb.append(sample.title).append("\t");
                sb.append(sample.exposure).append("\t");
                sb.append(pair.slice1).append("\t");
                sb.append(pair.slice2).append("\t");
                sb.append(IJ.d2s(pair.mean1, 2)).append("\t");
                sb.append(IJ.d2s(pair.mean2, 2)).append("\t");
                sb.append(IJ.d2s(mean[j], 2)).append("\t");
                sb.append(IJ.d2s(variance[j], 2)).append("\t");
                sb.append(Utils.rounded(gain, 4)).append("\n");
            }
            j++;
        }
        if (showTable)
            results.append(sb.toString());
    }
    IJ.showProgress(1);
    if (singleImage) {
        StoredDataStatistics stats = (StoredDataStatistics) gainStats;
        Utils.log(TITLE);
        if (emMode) {
            double[] values = stats.getValues();
            MathArrays.scaleInPlace(0.5, values);
            stats = new StoredDataStatistics(values);
        }
        if (showCharts) {
            // Plot the gain over time
            String title = TITLE + " Gain vs Frame";
            Plot2 plot = new Plot2(title, "Slice", "Gain", Utils.newArray(gainStats.getN(), 1, 1.0), stats.getValues());
            PlotWindow pw = Utils.display(title, plot);
            // Show a histogram
            String label = String.format("Mean = %s, Median = %s", Utils.rounded(stats.getMean()), Utils.rounded(stats.getMedian()));
            int id = Utils.showHistogram(TITLE, stats, "Gain", 0, 1, 100, true, label);
            if (Utils.isNewWindow()) {
                Point point = pw.getLocation();
                point.x = pw.getLocation().x;
                point.y += pw.getHeight();
                WindowManager.getImage(id).getWindow().setLocation(point);
            }
        }
        Utils.log("Single-image mode: %s camera", (emMode) ? "EM-CCD" : "Standard");
        final double gain = stats.getMedian();
        if (emMode) {
            final double totalGain = gain;
            final double emGain = totalGain / cameraGain;
            Utils.log("  Gain = 1 / %s (ADU/e-)", Utils.rounded(cameraGain, 4));
            Utils.log("  EM-Gain = %s", Utils.rounded(emGain, 4));
            Utils.log("  Total Gain = %s (ADU/e-)", Utils.rounded(totalGain, 4));
        } else {
            cameraGain = gain;
            Utils.log("  Gain = 1 / %s (ADU/e-)", Utils.rounded(cameraGain, 4));
        }
    } else {
        IJ.showStatus("Computing fit");
        // Sort
        int[] indices = rank(mean);
        mean = reorder(mean, indices);
        variance = reorder(variance, indices);
        // Compute optimal coefficients.
        // a - b x
        final double[] init = { 0, 1 / gainStats.getMean() };
        final PolynomialCurveFitter fitter = PolynomialCurveFitter.create(2).withStartPoint(init);
        final double[] best = fitter.fit(obs.toList());
        // Construct the polynomial that best fits the data.
        final PolynomialFunction fitted = new PolynomialFunction(best);
        if (showCharts) {
            // Plot mean verses variance. Gradient is gain in ADU/e.
            String title = TITLE + " results";
            Plot2 plot = new Plot2(title, "Mean", "Variance");
            double[] xlimits = Maths.limits(mean);
            double[] ylimits = Maths.limits(variance);
            double xrange = (xlimits[1] - xlimits[0]) * 0.05;
            if (xrange == 0)
                xrange = 0.05;
            double yrange = (ylimits[1] - ylimits[0]) * 0.05;
            if (yrange == 0)
                yrange = 0.05;
            plot.setLimits(xlimits[0] - xrange, xlimits[1] + xrange, ylimits[0] - yrange, ylimits[1] + yrange);
            plot.setColor(Color.blue);
            plot.addPoints(mean, variance, Plot2.CROSS);
            plot.setColor(Color.red);
            plot.addPoints(new double[] { mean[0], mean[mean.length - 1] }, new double[] { fitted.value(mean[0]), fitted.value(mean[mean.length - 1]) }, Plot2.LINE);
            Utils.display(title, plot);
        }
        final double avBiasNoise = Math.sqrt(noiseStats.getMean());
        Utils.log(TITLE);
        Utils.log("  Directory = %s", inputDirectory);
        Utils.log("  Bias = %s +/- %s (ADU)", Utils.rounded(bias, 4), Utils.rounded(avBiasNoise, 4));
        Utils.log("  Variance = %s + %s * mean", Utils.rounded(best[0], 4), Utils.rounded(best[1], 4));
        if (emMode) {
            final double emGain = best[1] / (2 * cameraGain);
            // Noise is standard deviation of the bias image divided by the total gain (in ADU/e-)
            final double totalGain = emGain * cameraGain;
            Utils.log("  Read Noise = %s (e-) [%s (ADU)]", Utils.rounded(avBiasNoise / totalGain, 4), Utils.rounded(avBiasNoise, 4));
            Utils.log("  Gain = 1 / %s (ADU/e-)", Utils.rounded(1 / cameraGain, 4));
            Utils.log("  EM-Gain = %s", Utils.rounded(emGain, 4));
            Utils.log("  Total Gain = %s (ADU/e-)", Utils.rounded(totalGain, 4));
        } else {
            // Noise is standard deviation of the bias image divided by the gain (in ADU/e-)
            cameraGain = best[1];
            final double readNoise = avBiasNoise / cameraGain;
            Utils.log("  Read Noise = %s (e-) [%s (ADU)]", Utils.rounded(readNoise, 4), Utils.rounded(readNoise * cameraGain, 4));
            Utils.log("  Gain = 1 / %s (ADU/e-)", Utils.rounded(1 / cameraGain, 4));
        }
    }
    IJ.showStatus("");
}
Also used : StoredDataStatistics(gdsc.core.utils.StoredDataStatistics) PlotWindow(ij.gui.PlotWindow) PolynomialFunction(org.apache.commons.math3.analysis.polynomials.PolynomialFunction) SeriesOpener(gdsc.smlm.ij.utils.SeriesOpener) Plot2(ij.gui.Plot2) Point(java.awt.Point) ImagePlus(ij.ImagePlus) StoredDataStatistics(gdsc.core.utils.StoredDataStatistics) Statistics(gdsc.core.utils.Statistics) Point(java.awt.Point) PolynomialCurveFitter(org.apache.commons.math3.fitting.PolynomialCurveFitter) WeightedObservedPoints(org.apache.commons.math3.fitting.WeightedObservedPoints) TextWindow(ij.text.TextWindow) GenericDialog(ij.gui.GenericDialog)

Aggregations

Median (org.apache.commons.math3.stat.descriptive.rank.Median)35 RealMatrix (org.apache.commons.math3.linear.RealMatrix)29 IntStream (java.util.stream.IntStream)28 Collectors (java.util.stream.Collectors)24 Logger (org.apache.logging.log4j.Logger)24 Percentile (org.apache.commons.math3.stat.descriptive.rank.Percentile)22 DoubleStream (java.util.stream.DoubleStream)20 File (java.io.File)18 Array2DRowRealMatrix (org.apache.commons.math3.linear.Array2DRowRealMatrix)17 ParamUtils (org.broadinstitute.hellbender.utils.param.ParamUtils)16 List (java.util.List)15 ArrayList (java.util.ArrayList)14 JavaSparkContext (org.apache.spark.api.java.JavaSparkContext)14 UserException (org.broadinstitute.hellbender.exceptions.UserException)14 ReadCountCollection (org.broadinstitute.hellbender.tools.exome.ReadCountCollection)14 SimpleInterval (org.broadinstitute.hellbender.utils.SimpleInterval)14 VisibleForTesting (com.google.common.annotations.VisibleForTesting)13 java.util (java.util)13 DefaultRealMatrixChangingVisitor (org.apache.commons.math3.linear.DefaultRealMatrixChangingVisitor)12 LogManager (org.apache.logging.log4j.LogManager)12